
Digital Signal Processing
Bernd Porr & Nick Bailey

January 26, 2025

https://www.youtube.com/dspcourse

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

1

https://www.youtube.com/dspcourse

Contents

1 Acknowledgements 4

2 Introduction 4
2.1 Suggested reading . 4
2.2 Advantages of digital signal processing 4
2.3 Development boards . 4

3 Python 4
3.1 How to use Python? . 5
3.2 Packages/Modules . 6
3.3 Data types . 7
3.4 Control structures . 9
3.5 Functions . 9
3.6 Classes . 10
3.7 Mathematical functions . 11
3.8 Plotting of Functions . 11
3.9 Importing data . 12

4 Signal conversion 13
4.1 Sampling . 13

4.1.1 Normalised frequency 13
4.1.2 Nyquist frequency . 14
4.1.3 Sampling theorem . 16

4.2 Quantisation . 16

5 Frequency representation of signals 18
5.1 Continuous time and frequency 18

5.1.1 Periodic signals . 18
5.1.2 A-periodic signals . 20

5.2 Sampled time and/or frequency 20
5.2.1 Discrete time Fourier Transform (DTFT) 20
5.2.2 The effect of time domain sampling on the spectrum

(Sampling theorem) . 20
5.2.3 Discrete Fourier Transform (DFT) 23
5.2.4 Properties of the DFT 25
5.2.5 Problems with finite length DFTs 26
5.2.6 Fast Fourier Transform 26

5.3 Software . 29
5.4 Visualisation . 29

2

6 Causal Signal Processing 31
6.1 Causality . 31
6.2 Convolution of Causal Signals 32
6.3 Laplace transform . 33
6.4 Filters . 33

6.4.1 How to characterise filters? 34
6.5 The z-transform . 34
6.6 Frequency response of a sampled filter 35
6.7 FIR Filter . 37

6.7.1 Generally FIR filters do not perform a convolution operation 38
6.7.2 FIR filter implementations 39
6.7.3 Fixed point FIR filters 40
6.7.4 Constant group delay or linear phase filter 41
6.7.5 Window functions . 42
6.7.6 Python code: impulse response from the inverse DFT -

The frequency sampling method 44
6.7.7 FIR filter design from ideal frequency response – The an-

alytical way . 45
6.7.8 Design steps for FIR filters 46
6.7.9 FIR filter design with Python’s high level functions 47
6.7.10 Signal Detection: Matched filter 47
6.7.11 Adaptive FIR Least Mean Squares (LMS) filters 48

6.8 IIR Filter . 51
6.8.1 Introduction . 51
6.8.2 Determining the data-flow diagram of an IIR filter 52
6.8.3 General form of IIR filters 53
6.8.4 IIR filter topologies . 53
6.8.5 Fixed point IIR filters 55
6.8.6 Filter design based on analogue filters 56
6.8.7 Adaptive IIR filter: The Kalman filter 59
6.8.8 The role of poles and zeros 60

3

1 Acknowledgements

A big thanks to Fiona Baxter for typing up the handwritten lecture notes and
turning them into LATEX.

2 Introduction

This handout introduces you into the basic concepts of Digital Signal Processing.
In contrast to the YouTube clips it focusses more on the theoretical aspects
of it and its analytical derivations. The (video-) lectures cover more practical
programming examples in Python and C++.

2.1 Suggested reading

• Digital Signal Processing by John G. Proakis and Dimitris K Manolakis

• Digital Signal Processing: System Analysis and Design by Paulo S. R.
Diniz, Eduardo A. B. da Silva, and Sergio L. Netto

2.2 Advantages of digital signal processing

• flexible: reconfigurable in software!

• easy storage: numbers!

• cheaper than analogue design

• very reproducible results (virtually no drift)

2.3 Development boards

Buy a DSP development board and play with it. You get them either directly
from a company or from a distributor such as Farnell or RS. Also general purpose
boards such as the Raspberry PI and Arduino are great platforms for DSP.

3 Python

Python is a fully featured scripting language and it’s very well thought through
in its approach. It has a vast library of modules which means that only rarely you
need implement low level functionality. It can be programmed both in a quick

4

and dirty approach to try out new ideas and at the same time it supports object
oriented programming so that truly professional programs can be developed.

Python has a straightforward interface to call C and C++ functions so that
you can also mix it with C/C++ to speed up processing. For example a digital
filter class might have the design parts written in python and the actual fast
filter routines implemented in C. All this is supported by the python package
management so that you can also deploy mixed python / C code without any
problems. For example the AI library by google “tensorflow” can be installed as
a python package and in the background it uses the GPUs on your computer
without even noticing.

Here, I just comment on certain aspects of Python which are important for
DSP. Check out the full documentation of python if you are interested beyond
DSP in it. In particular it has also very easy to use support for GUI programming.

3.1 How to use Python?

There are two ways to use Python. The one is interactive within the python
console and then the other method is by running a python script.

Development environments such as anaconda have both the console and then
scripting facility integrated under one roof.

The python console The python console you can just start by typing “python”:

Python 3.8.10 (default, Jun 2 2021, 10:49:15)

[GCC 9.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

then you can type in commands one by one. Under Windows you might need to
point the PATH variable to your python program or you let Anaconda do it for
you.

Python scripts Scripts are text files which contain python commands. One
command per line and these are executed line by line.

Write your commands in any text editor and save it as a .py-file. However,
it’s recommended to use an editor which supports at least python’s indentation
which is a very important feature of python. We’ll see that indentation in python
defines the body of a function, the content of a loop or the code executed
conditionally.

So, it’s recommended for any serious work to install an editor which supports
python such as spyder, VS-code, py-charm or emacs.

5

Once you have your script file saved just type “python myscript.py” and it
will be executed.

Help There is an abundance of online help available for Python. The official
Python pages have an excellent tutorial (https://docs.python.org/3/tutorial/)
and of course you find answers to all your questions on Stack Overflow.

If you need help for a function you can use the in built help function “help(thecommand)”
to get help for “thecommand”. Try out “help(print)” to get help for the “print”
command.

3.2 Packages/Modules

The power of Python comes form thousands of modules which are shipped with
python or can be installed via python’s package manager. A package contains
usually many modules. The standard package manager of python is called “pip”
which downloads the package for you and installs it. This is not just very con-
venient but also is safe because the download location is the official python
repository.

In general you import modules with the “import” command. For example
“import numpy as np” imports the module numpy into python and abbreviates
it as “np” so that you’d write “np.sin(c)” to call the sine function in numpy.

The import command loads essentially a file called “numpy.py” so that you
can write your own modules just by creating file with that name. See below in
the “class” section for an example. There are numerous ways how to import
modules but the “import as” way is by far the most popular.

Important modules are:

• numpy: Numerical operations for number crunching, matrix/array opera-
tions, trigonometric functions, etc. It offers fast numerical operations on
arrays and matrices. It also has extensive Fourier Transform commands.

• pylab: Plotting functions (MATLAB style), statistics and data fitting func-
tions

• scipy: Scientific computing package. In particular we are insterested in
scipy.signal which contains all the signal processing functions and filter
design commands. It also offers Fourier Transforms, data io routines, vector
quantisation, linear algebra, optimisation tools and statistics.

6

3.3 Data types

Python has all the standard data types such as int, float, string, . . . and a few
more. You can check which type a variable has with: “type(variable)”. Important
for DSP are these types:

Numbers Numbers are represented in a standard way, including complex num-
bers:

• 6E23= 6 · 1023

• 6+2j is a complex number which is just generated by adding a “j” to the
imaginary part.

• complex(0,1) creates 1j and is useful if you have variables which you
want to combine into a complex number.

Note that python has implicit types which might make you trip over. If you write
“a=1” then “a” is an integer whereas “a=1.0” is a floating point number. You
can force a certain type by using the typecast operator, for example “ a = int(b)”
to create an integer.

Lists There are numerous data types in Python which allow storing collections
of data. For DSP we need: lists, tupels and arrays. To clear up the confusion
from the start we are going through them one by one. First up: lists!

• p = [1,9,77] is a list with the components 1,2 and 77.

• p[2] returns the third element of the list (the index counts from 0). Note
the index needs to be an integer so you might need to cast a floating point
variables first into an integer, for example “p[int(a)]”.

• p[1:5] extracts from the list all elements from index number 1 to index
number 4 (!). The index 5 is excluded! This is called splicing. Check out
the online docs for more examples.

• p = range(1,4) generates 1, 2, 3 which is the same as a “for loop” in C:
for(int i=1;i¡4;i++)

• p.append(10) adds a new element to the end of the list. You see that
lists are essentially classes with methods (see below)! Check out the doc-
umentation for more options to manipulate lists.

• len(p2) provides the number of elements.

7

Tupels Tupels are similar to lists but they are rather used as “containers” to
package up different variables into one variable. For example, you might want to
put the sampling rate and the resolution of an ADC into a tuple as they belong
together.

• p = (1,9,’kk’) is a tupel with the two integer numbers 1,2 and ’kk’.

• The round brackets are often omitted: p = 1,9,’kk’ which implicitly
defines a tupel.

• p[1] returns the 2nd element of the tupel (the index counts from 0).

• Extracting a tupel into separate variables also works: a,b,c = p assigns
1 to a, 9 to b and ’kk’ to c. This is very convenient for functions if you
want to return more than one result. Just package them up into a tuple
and return it.

numpy Arrays/Matrices Numpy arrays or matrices are used for number crunch-
ing and are ideal for DSP. Use these for all of you DSP data manipulation. They
are essentially C arrays with a thin wrapper around them. In order to create and
manipulate these arrays you need to use the numpy functions.

• a = np.array([1, 2, 5]) which creates a numpy array from a standard
Python list containing 1,2,5.

• b = np.array([[6, 2], [9, 7]]) creates a two dimensional array.

• There are a lot of convenience functions in numpy to create arrays just
containing zeros, ones or ascending numbers etc. Check out the numpy
docs.

Since numpy arrays are close relatives to C arrays they have an additional
field which is called “dtype” which determines the type of the array elements,
for example “int16” (a 16 bit wide integer).

>>> data

array([-12288, -12545, -12798, ..., 511, 513, 513], dtype=int16)

>>> data.dtype

dtype(’int16’)

>>> data.astype(float)

array([-12288., -12545., -12798., ..., 511., 513., 513.])

where the member function “astype” can convert from one array type to another,
here from int16 to floating point.

8

3.4 Control structures

Conditionals Conditional operation is done in exactly the same way as in other
languages:

if a > c:

a = c

c = c*2

print(c)

The indent of 4 characters indicates the conditionally executed commands. The
same applies for do and while loops where the body has an indent. Here, print(c)
is always executed because it doesn’t have an indent.

Loops Imagine you want to calculate the average of the array y.

s = 0.0

for i in range(len(y)):

s = s + y[i]

print("Average:",s/len(y))

The “for” statement iterates through all elements of an array with the help of a
list created by the “range” command. This is very much C-like. However Python,
as for example in C++11 or Swift, allows iterating over the array elements
themselves:

s = 0.0

for v in y:

s = s + v

print("Average:",s/len(y))

which is a much more compact and safe way of coding as there will never be an
out of bounds error.

Important: the indent indicates the commands which the loop iterates through.
This is the general rule in python.

See the Python documentation for other ways of creating loops.

3.5 Functions

Function definitions can happen anywhere in the program or in a separate file.
For example, the above average calculations can be defined as:

9

def myaverage(y):

s = 0.0

for v in y:

s = s + v

return (s/len(y))

and then called from the main program as myaverage(a). The keyword “def”
indicates the start of the function definition. Note again the 4 character indent
for the function body and the colon after the function name. This is characteristic
for python.

3.6 Classes

Classes contain functions and variables. They usually have a constructor called
init which is a special function which is called when an instance of a class is
created.

class MyAmazingClass:

def __init__(self,coeff):

Your init code here.

self.mylocalcoeff = coeff

def doSomeProcessing(self,data):

we process data

data = data * self.mylocalcoeff

return data

(!) Note the special variable “self” which is the first argument of every method in
a class. Variables which are part of the class are references by “self”. For example
the constructor argument “coeff” is saved in the class as “mylocalcoeff” and is
then available throughout the lifetime of the class as “self.mylocalcoeff”. When
we call the method “doSomeProcessing” then “self.mylocalcoeff” is multiplied
with the “data” argument and the result is returned. Anything which hasn’t got
“self.” in front of it will be forgotten after the function has terminated. In this
way you distinguish which variables are kept for the lifetime of the class or are
just used temporarily.

Classes are just types and need to be instantiated:

f = MyAmazingClass(5)

a = f.doSomeProcessing(10)

b = f.doSomeProcessing(20)

10

which will give us 50 as a result for the variable “a” and 100 for the variable “b”.
The variable “f” is the instance of the class MyAmazingClass and the argument
initialises self.mylocalcoeff with 5.

3.7 Mathematical functions

Just import the numpy library which contains all the mathematical functions and
constants such as pi. import numpy as np. It has all the standard functions
such as np.sin, np.cos, np.tan, np.exp,

Note that these functions also take arrays as arguments. For example, in-
putting the array x into the sine:

x = np.array(range(6))

y = np.sin(x);

yields again an array in y! All elements have been processed at the same time.

3.8 Plotting of Functions

Pylab has a vast amount of plotting functions which supports simple plotting
with just two commands (plot and show) up to complex animations of 3D data.
Plotting a sine wave can be achieved with:

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0,2*np.pi,100)

y = np.sin(x)

plt.plot(x,y)

plt.show()

where I have used the numpy linspace command to create an array which runs
from 0 to two pi with 100 samples.

If you want to create more plot-windows you can use the command plt.figure.
Access the windows with the commands plt.figure(1), plt.figure(2).

It is also possible to combine plot windows into one with the command
subplot.

How to make it look nice? Here is an example:

plt.xlabel(’time (s)’)

plt.ylabel(’voltage (V)’)

plt.title(’That is an AC voltage over time!’)

plt.grid(True)

Generally the best approach is to use an example and then customise it to
your needs.

11

3.9 Importing data

Space/Tab/Comma separated data Numpy has a very handy import func-
tion for data as long as the the elements in the data file are separated with spaces,
tabs or commas. To load such data files just type in: x = np.loadtxt(’mydatafile.dat’).
This creates a two dimensional array which reflects exactly the structure in the
datafile.

Thus, if you want to write software which creates Python readable data then
just export the data as space/tab separated ASCII files.

WAV files Scipy contains in its submodule io a subsubmodule wavfile which
supports reading and writing wav files:

import scipy.io.wavfile as wavfile

fs,data = wavfile.read(’kongas.wav’);

fs,data is a tuple containing the sampling rate and then the data.

import scipy.io.wavfile as wavfile

wavfile.write(’kongas_filt.wav’,fs,y3);

whereas ’fs’ is the sampling rate and y3 the data – usually normalised between
-1 and +1 for floating point numbers.

12

4 Signal conversion

We start with a few definitions when we transform an analogue signal into the
digital domain and back:

1. Sampling

xa(nT)︸ ︷︷ ︸
analogue signal

≡ x(n)︸ ︷︷ ︸
discrete data

(1)

• xa(t): analogue signal

• T : sampling interval, 1
T
= Fs is the sampling rate

• x(n): discrete data

2. Quantisation Continuous value into discrete steps. x(n)→ xq(n)

3. Coding xq(n)→ into binary sequence or integer numbers.

4.1 Sampling

The analogue signal Xa is sampled at intervals T to get the sampled signal X(n).

x(n) = xa(nT), −∞ < n < +∞ (2)

4.1.1 Normalised frequency

Note that the sampling frequency

Fs =
1

Ts

(3)

is lost and needs to be stored additionally so that the analogue signal can be
reconstructed:

xa(t) = xa(nT) = xa(
n

Fs

) (4)

What is the frequency range of our digital signal? What is the maximum
frequency in digital terms? Fig 1 shows that the max frequency is 0.5 because
we need two samples to represent a “wave”. The frequency range 0 . . . 0.5 is
called the normalised frequency range. What is the relation between normalised
frequency and sampling rate?

Let’s have a look at the analog signal Xa(t) with the frequency F :

xa(t) = A cos(2πFt) (5)

13

Figure 1: Maximum frequency of a sampled signal is half the normalised frequency.

and we sample it only at:
t = n/Fs (6)

Then the digital signal is:

xa(n) = A cos(2πF/Fsn) (7)

Now, we can define the normalised frequency as:

Normalised frequency: f =
F

Fs

(8)

which has its max value at 0.5 which represents one period of a sine wave within
two samples1

4.1.2 Nyquist frequency

Recall that the max value for the normalised frequency f is 0.5 and that:

xa(n) = A cos(2πnf) (9)

with n as an integer because we are sampling.
What happens above f > 0.5? Imagine f = 1

xa(n) = cos(2πn) = 1 f = 1 (10)

which gives us DC or zero frequency. The same is true for f = 2, 3, 4, We
see that above f = 0.5 we never get higher frequencies. Instead they will always

1Note that the normalised frequency in Python’s scipy is differently defined. In scipy it is
annoyingly defined as fscipy = 2 F

Fs
. So, in other words fscipy = 1 is the Nyquist frequency

instead of f = 0.5 as normally defined.

14

stay between 0 . . . 0.5 for the simple reason that it is not possible to represent
higher frequencies. This will be discussed later in greater detail.

The ratio F/Fs must be lower than 0.5 to avoid ambiguity or in other words
the maximum frequency in a signal must be lower than 1

2
Fs. This is the Nyquist

frequency.
If there are higher frequencies in the signal then these frequencies are “folded

down” into the frequency range of 0 . . . 1
2
Fs and creating an alias of its original

frequency in the so called “baseband” (f = 0 . . . 0.5). As long as the alias
is not overlapping with other signal components in the baseband this can be
used to downmix a signal. This leads to the general definition of the sampling
theorem which states that the bandwidth B of the input signal must be half of
the sampling rate Fs:

B <
1

2
Fs (11)

The frequency 1
2
Fs is called the Nyquist frequency.

Figure 2: Anti alias filtering. A) with a lowpass filter. B) with a sigma delta converter
with very high sampling rate.

What do we do if the signal contains frequencies above 1
2
Fs? There are two

ways to tackle this problem: The classical way is to use a lowpass filter (see
Fig. 2A) which filters out all frequencies above the Nyquist frequency. However
this might be difficult in applications with high resolution A/D converters. Al-
ternatively one can use a much higher sampling rate to avoid aliasing. This is
the idea of the sigma delta converter which operates at sampling rates hundred
times higher than the Nyquist frequency.

15

4.1.3 Sampling theorem

Is it possible to reconstruct an analogue signal from a digital signal which contains
only frequencies below the Nyquist frequency?

Fs > 2Fmax (12)

where Fmax is max frequency in the signal which we represent by sine waves:

xa(t) =
n∑

i=1

Ai cos(2πFit+Θi) (13)

The analogue signal xa(t) can be completely reconstructed if:

g(t) =
sin 2πBt

2πBt
(14)

with
B = Fmax (15)

xa(t) =
a∑

h=−a

xa(
n

Fs

)g(t− h

Fs

) (16)

The problem is that g(t) runs from negative time to positive time and as we
see later is a-causal so that this cannot be implemented for real but approxima-
tions of g(t) are possible and are analogue lowpass filters which smooth out the
step like outout of an digital to analogue converter.

4.2 Quantisation

A/D converters have a certain resolution. For example, the MAX1271 has a
resolution of 12 bits which means that it divides the input range into 4096 equal
steps (see Fig 3).

∆ = quantisation step =
xmax − xmin

L− 1
(17)

where xmax − xmin is the dynamic range in volt (for example 4.096V) and L
is the number of quantisation steps (for example, 4096). ∆ is the quantisation
step which defines minimal voltage change which is needed to see a change in
the output of the quantiser. The operation of the quantiser can be written down
as:

xq(n) = Q[x(n)] (18)

16

Figure 3: ∆ is the quantisation step.

Figure 4: Illustration of the quantisation error. It is zero at t = 0 and increases to the
edges of the sampling interval. Illustrated is the worst case scenario. This repeats in
the next sampling interval and so forth.

Fig. 4 shows error produced by the quantiser in the worst case scenario. From
that it can be seen that the maximum quantisation error is half the quantisation
step:

−∆

2
≤ e(n) ≤ ∆

2
(19)

The smaller the quantisation step ∆ the lower the error!
What is the mean square error Pq?

Pq =
1

τ

∫ τ

0
e2q(t)dt (20)

17

Pq =
1

τ

∫ τ

0

(
∆

2τ

)2

t2dt (21)

=
∆2

4τ 3

∫ τ

0
t2dt (22)

Pq =
∆2

12τ 3
τ 3 =

∆2

12
(23)

this then results in the almost trival result that the size of the quantisation

step ∆ scales linarly with the average error
√
Pq. So if we have two times more

quantisation steps then the error will half!
What is the relative error to a sine wave?

Px =
1

Tp

∫ Tp

0
(A cosΩt)2dt =

A2

2
(24)

Ratio to signal power to noise:

SQNR =
Px

Pq

=
A2

2
.
12

∆2
(25)

=
6A2

∆2
(26)

This equation needs to be interpreted with care because increasing the amplitude
of the input signal might lead to saturation if the input range of the A/D converter
is exceeded.

5 Frequency representation of signals

Often we are more interested in the frequency representation of signals than the
evolution in time.

We will use small letters for time domain representation and capital letters
for the frequency representation, for example X(F) and x(t).

5.1 Continuous time and frequency

5.1.1 Periodic signals

Periodic signals can be composed of sine waves :

x(t) =
∞∑

k=−∞
cke

j2πkF1t (27)

18

where F1 is the principle or fundamental frequency and k ̸= 1 are the harmonics
with strength ck. Usually c1 is set to 1. This is a Fourier series with ck as
coefficients. For example an ECG has a fundamental frequency of about 1Hz (60
beats per minute). However, the harmonics give the ECG its characteristic peak
like shape.

How do we find the coefficients ck?

ck =
1

Tp

∫
Tp

x(t)e−j2πkF1tdt (28)

For simple cases there are analytical solutions for ck, for example for square
waves, triangle wave, etc.

What are the properties of ck?

ck = c∗−k ⇔ x(t) is real (29)

or

ck = | ck | ejθk (30)

c−k = | ck | e−jθk (31)

Proof: with the handy equation. . .

cos z =
1

2

(
ezi + e−zi

)
(32)

we get

x(t) = c0 +
∞∑
k=1

| ck | ejθkej2πkF1t +
∞∑
k=1

| ck | e−jθke−j2πkF1t (33)

= c0 + 2
∞∑
k=1

| ck | cos(2πkF1t+ θk) (34)

How are the frequencies distributed? Let’s have a look at the frequency
spectrum of a periodic signal: Pk =| ck |2

• There are discrete frequency peaks

• Spacing of the peaks is 1
T1

= F1

• Only the positive frequencies are needed: c−k = c∗k

19

5.1.2 A-periodic signals

In case nothing is known about X(t) we need to integrate over all frequencies
instead of just the discrete frequencies.

X(F) =
∫ ∞

−∞
x(t)e−j2πFtdt (35)

Consequently, the frequency spectrum X(F) is continuous.

x(t) =
1

2π

∫ ∞

−∞
X(F)ej2πFtdF (36)

5.2 Sampled time and/or frequency

5.2.1 Discrete time Fourier Transform (DTFT)

The signal x(n) is discrete whereas the resulting frequency spectrum is considered
as continuous (arbitrary signals).

• Analysis or direct transform:

X(ω) =
∞∑

n=−∞
x(n)e−jωn (37)

• Synthesis or inverse transform:

x(n) =
1

2π

∫ π

−π
X(ω)ejωndω (38)

=
1

2π

∫ 0.5

−0.5
X(f)ej2πfndf (39)

note the range here. f is the normalised frequency.

5.2.2 The effect of time domain sampling on the spectrum (Sampling
theorem)

What effect has time domain sampling on the frequency spectrum2? Imagine
we have an analog spectrum Xa(F) from a continuous signal x(t). We want to
know how the spectrum X(F) of the discrete signal x(n) looks like.

X(F)⇔ Xa(F) (40)

2This derivation is loosely based on Proakis and Manolakis (1996)

20

Figure 5: Effect of sampling on the spectrum.

The signal is represented by x(n) so that we can equate the Fourier transforms
of the sampled spectrum X(F) and of the analogue spectrum Xa(F).∫ 0.5

−0.5
X(f)︸ ︷︷ ︸

sampled

ej2πfndf =
∫ +∞

−∞
Xa(F)︸ ︷︷ ︸
cont

ej2πnF/FsdF (41)

Obviously X(f) must be different to accommodate the different integration
ranges. The trick is now to divide the integral on the right hand side of Eq. 41
into chunks to make it compatible to the range on the left hand hand side.

Remember that the normalised frequency is f = F/Fs which allows us to
change the integration to analogue frequency on both sides:

1

Fs

∫ Fs/2

−Fs/2
X(

F

Fs

)ej2πnF/FsdF =
∫ +∞

−∞
Xa(F)ej2πnF/FsdF (42)

and now we divide the right hand side into chunks of Fs which corresponds to
the integration range on the left hand side.∫ +∞

−∞
Xa(F)ej2πn

F
Fs dF =

∞∑
k=−∞

∫ + 1
2
Fs+kFs

− 1
2
Fs+kFs

Xa(F)ej2πn
F
Fs dF (43)

=
∞∑

k=−∞

∫ + 1
2
Fs

− 1
2
Fs

Xa(F − kFs) ej2πn
F
Fs︸ ︷︷ ︸

kFs omit.

dF (44)

21

=
∫ + 1

2
Fs

− 1
2
Fs

∞∑
k=−∞

Xa(F − kFs)︸ ︷︷ ︸
=X(F) of Eq. 42

ej2πn
F
Fs dF (45)

This gives us now an equation for the sampled spectrum:

X(F/Fs) = Fs

∞∑
k=−∞

Xa(F − kFs) (46)

X(f) = Fs

∞∑
k=−∞

Xa[(f − k)Fs] (47)

This equation can now be interpreted. In order to get the sampled spectrum
X(F) we need to make copies of the analog spectrum Xa(F) and place these
copies at multiples of the sampling rate Fs (see Fig. 5). This illustrates also the
sampling theorem: if the bandwidth of the spectrum is wider than Fs/2 then
the copies of the analogue spectrum will overlap and reconstruction would be
impossible. This is called aliasing. Note that it is not necessary bad that the
spectrum of the analogue signal lies within the range of the so called “base band”
−F/2 . . . F/2. It can also lie in another frequency range further up, for example
−F/2 + 34 . . . F/2 + 34 as long as the bandwidth does not exceed Fs/2. If it
is placed further up it will automatically show up in the baseband −F/2 . . . F/2
which is called “fold down”. This can be used for our purposes if we want to
down mix a signal.

Figure 6: Mapping of frequencies in the analogue domain (F) and sampled domain
(f). Fs is the sampling rate.

22

With the insight from these equations we can create a plot of how analogue
frequencies map onto sampled frequencies. Fig 6 shows how the analogue fre-
quencies Fanalogue map on the normalised frequencies fsampled. As long as

the analogue frequencies are below Fs/2 the mapping is as usual as shown in
Fig 6A. Between Fs/2 and Fs we have an inverse mapping: an increase in ana-
logue frequency causes a decrease in frequencies. Then, from Fs we have again
an increase in frequencies starting from DC. So, in general if we keep a ban-
dlimited signal within one of these slopes (for example from Fs . . . Fs+1/2Fs as
shown in Fig 6B) then we can reproduce the signal.

This leads us to the generalised Nyquist theorem: if a bandpass filtered signal
has a bandwidth of B then the minimum sampling frequency is Fs = 2B.

5.2.3 Discrete Fourier Transform (DFT)

So far we have only sampled in the time domain. However, on a digital computer
the Fourier spectrum will always be a discrete spectrum.

The discrete Fourier Transform (DFT) is defined as:

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N k = 0, 1, 2, . . . , N − 1 (48)

where N is the number of samples in both the time and frequency domain.
The inverse discrete Fourier Transform (IDFT) is defined as:

x(n) =
1

N

N−1∑
k=0

X(k)ej2πkn/N n = 0, 1, 2, . . . , N − 1 (49)

Figure 7: Effect of sampling in the frequency domain. The inverse in the time domain
x(n) contains repetitions of the original signal.

What is the effect in the timedomain of this discretisation3? We start with
the continuous Fourier transform and discretise it into N samples in the frequency

3This derivation is loosely based on Proakis and Manolakis (1996)

23

domain:

X
(
2π

N
k
)
=

∞∑
n=−∞

x(n)e−j 2π
N

kn k = 0, . . . , N − 1 (50)

Let’s subdivide the sum into chunks of length N :

X
(
2π

N
k
)

=
∞∑

l=−∞

lN+N−1∑
n=lN

x(n)e−j 2π
N

kn (51)

=
∞∑

l=−∞

N−1∑
n=0

x(n− lN)e−j 2π
N

kn (52)

=
N−1∑
n=0

∞∑
l=−∞

x(n− lN)︸ ︷︷ ︸
Periodic repetition!

e−j 2π
N

kn (53)

We note the following:

• Ambiguity in the time domain

• The signal is repeated every N samples

Practically this repetition won’t show up because the number of samples is limited
to N in the inverse transform. However, for operations which shift signals in the
frequency domain it is important to remember that we shift a periodic time series.
If we shift it out at the end of the array we will get it back at the start of the
array.

Fig. 8 shows an example of a DFT. It is important to know that the spectrum
is mirrored around N/2. DC is represented by X(0) and the Nyquist frequency
Fs/2 is represented by X(N/2). The mirroring occurs because the input signal
x(n) is real. This is important if one wants to modify the spectrum X(F) by
hand, for example to eliminate 50Hz noise. One needs to zero two elements of
X(F) to zero. This is illustrated in this python code:

import scipy as sp

yf=sp.fft(y)

the sampling rate is 1kHz. We’ve got 2000 samples.

midpoint at the ifft is 1000 which corresponds to 500Hz

So, 100 corresponds to 50Hz

yf[99:101+1]=0;

and the mirror

yf[1899:1901+1]=0;

#

yi=sp.ifft(yf);

24

Figure 8: Example of a DFT. The sampled signal x(n) is converted to the spectrum
X(k). Both have N samples. Note the redundancy: the spectrum is mirrored around
N/2. The first value X(0) is the DC value of the signal. However this is the only
sample which is not mirrored.

This filters out the 50Hz hum from the signal y with sampling rate 1000Hz. The
signal yi should be real valued again or contain only very small complex numbers
due to numerical errors.

5.2.4 Properties of the DFT

• Periodicity:

x(n+N) = x(n) (54)

X(k +N) = X(k) (55)

• Symmetry: if x(n) real:

x(n) is real⇔ X∗(k) = X(−k) = X(N − k) (56)

This is important when manipulating X(k) by hand.

25

• Time Reversal:

x(n) ↔ X(k) (57)

x(−n) ↔ X(N − k) (58)

• Circular convolution:

X1(k)X2(k)↔ x1(n) ∗ x2(n) (59)

with

x3(m) =
N−1∑
n=0

x1(n)x2(m− n) (60)

More useful equations are at Proakis and Manolakis (1996, pp.415).

5.2.5 Problems with finite length DFTs

xw(n) = x(n) · w(n) (61)

where x is the input signal and w(n) represents a function which is 1 from n = 0
to n = L− 1 so that we have L samples from the signal x(n).

To illustrate the effect of this finite sequence we introduce a sine wave x(n) =
cosω0n which has just two peaks in a proper Fourier spectrum at −ω and +ω.

The spectrum of the rectangular window with the width L is:

W (ω) =
sin(ωL/2)

sin(ω/2)
e−jω(L−1)/2 (62)

The resulting spectrum is then:

X3(ω) = X(ω) ∗W (ω) (63)

Because the spectrum of X(ω) consists of just two delta functions the spec-
trum X3(ω) contains the window spectrum W (ω) twice at −ω and +ω (see
Fig. 9). This is called leakage. Solutions to solve the leakage problem? Use
Windows with a narrower spectrum and with less ripples (see FIR filters).

5.2.6 Fast Fourier Transform

We can rewrite the DFT (Eq. 48) in a slightly more compact form:

X(k) =
N−1∑
n=0

x(n)W kn
N (64)

26

x(n)

w(n)

n

n

finite length

|W(k)|

|W(k)|

k

kN/2

N/2

signal

window

spectrum of
window

spectrum of
the sine wave
convoluted with
the window

Figure 9: The effect of windowing on the DFT.

with the constant:
WN = e−j2π/N (65)

The problem with the DFT is that it needs N2 multiplications. How can we
reduce the number of multiplications? Idea: Let’s divide the DFT in an odd and
an even sequence:

x(2m) (66)

27

x(2m+ 1), m = 0,,
N

2
− 1 (67)

which gives us with the trick W 2mk
N = Wmk

N/2 because of the definition Eq. 65.

X(k) =
N/2−1∑
m=0

x(2m)W 2mk
N +

N/2−1∑
m=0

x(2m+ 1)W
k(2m+1)
N (68)

=
N/2−1∑
m=0

x(2m)Wmk
N/2 +W k

N

N/2−1∑
m=0

x(2m+ 1)Wmk
N/2 (69)

= Fe(k) +W k
NFo(k) (70)

Fe and Fo have both half the length of the original sequence and need only
(N/2)2 multiplication, so in total 2 · (N/2)2 = N2

2
. Basically by dividing the

sequence in even and odd parts we can reduce the number of multiplications by
2. Obviously, the next step is then to subdivide the two sequences Fe(k) and
Fo(k) even further into something like Fee(k), Feo(k), Foe(k) and Foo(k).

Figure 10: Illustration of the Fast Fourier Algorithm. The sequence of N samples is
recursively divided into subsequences of odd and even samples.

In general the recipe for the calculation of the FFT is:

Xi(k) = Xie(k) +W k
LXio(k) (71)

28

W k
L is the phase factor in front of the odd sequence. This is continued until we

have only two point (N = 2) DFTs (see Eq. 64):

DC: X(0) = x(0) +W 0
2︸︷︷︸

1

x(1) = x(0) + x(1) (72)

Nyquist frequ.: X(1) = x(0) +W 1
2︸︷︷︸

−1

x(1) = x(0)− x(1) (73)

A two point DFT operates only on two samples which can represent only two
frequencies: DC and the Nyquist frequency which makes the calculation trivial.
Eq. 72 is an averager and Eq. 73 is basically a differentiator which gives the
max output for the sequence 1,−1, 1,−1, Fig. 10 illustrates how to divide
the initial sequence to arrive at 2 point DFTs. In other words the calculation
of the full DFT is done by first calculating N/2 2 point DFTs and recombining
the results with the help of Eq. 71. This is sometimes called the “Butterfly”
algorithm because the data flow diagram can be drawn as a butterfly. The
number of complex multiplications reduces in this approach to N log2N which
is actually the worst case scenario because many W k

L usually turn out to be
1,−1, j,−j which are just sign inversions or swaps of real and imaginary parts.
A clever implementation of this algorithm will be even faster.

In summary the idea behind the FFT algorithms is to divide the sequence into
subsequences. Here we have presented the most popular radix 2 algorithm. The
radix 4 is even more efficient and there are also algorithms for divisions into prime
numbers and other rather exotic divisions. However, the main idea is always the
same: subsample the data in a clever way so that the final DFT becomes trivial.

5.3 Software

In Teukolsky et al. (2007) you’ll find highly optimised C code for Fourier trans-
forms. Most Linux distros (Ubuntu, Suse, RedHat, . . .) come with an excellent
FFT library called libfftw3.

5.4 Visualisation

The Fourier spectrum is a complex function of frequency which cannot be dis-
played in a convenient way. Usually the amplitude or magnitude of the spectrum
is of interest (see Fig. 11) which is calculated as the absolute value |X(F)| of
the Fourier spectrum X(F). In addition the phase might be of interest which is
calculated as arg(X(F)).

• Magnitude or Amplitude: |X(F)|

• Phase: arg(X(F))

29

Figure 11: An ECG signal in the time- and frequency domain.

30

6 Causal Signal Processing

In realtime systems and any system where data is processed as it arrives the
values of the future samples are not known. This is as in an analogue system
where we send for example a signal into an amplifier and it needs to process it as
it arrives. The amplifier won’t know if the next music track is Mozart or Jimmy
Hendrix. It just needs to react to what it’s fed into it.

However, the Fourier Transform is not real time. We need the whole signal
from the first to the last sample. For that reason we need to develop a new math-
ematical framework which we call “Causal Signal Processing”. These systems
should ideally react to an incoming signal as an analogue system does, namely
as fast as possible with little latency as possible.

In the next section we are now developing a mathematical framework for
causal digital signal processing. We draw here heavily from analoge circuit design
as this is by its own nature performs realtime causal processing.

6.1 Causality

Figure 12: A causal system only reacts to it’s input. Causal signals only evolve in
positive time. Per definition the signal is zero for t < 0.

Fig. 12 illustrates the concept of causality. Causal systems cannot look into
the future. They can only react to a certain input. Causal signals are kept zero
for t < 0 per definition.

31

Figure 13: Illustration of the convolution. The shaded area shows the integration for
t = 1.

6.2 Convolution of Causal Signals

After having defined causality we can define the convolution in continous time:

y(t) = h(t) ∗ x(t) =
∫ ∞

−∞
h(t− τ)x(τ)dτ (74)

y(n) = h(n) ∗ x(n) =
∞∑

n=−∞
h(n)x(m− n) (75)

Note the reversal of integration of the function h. This is characteristic of the
convolution. At time t = 0 only the values at h(0) and x(0) are evaluated (see
Fig. 13). Note that both functions are zero for t < 0 (causality!). At t > 0 the
surface which is integrated grows as shown in Fig. 13 for t = 1.

What happens if x(t) = δ(t)? Then Eq. 75:

y(t) =
∫ ∞

−∞
h(t− τ)δ(τ)dτ = h(t) (76)

provides us with the function h(t) itself. This will be used later to determine the
impulse response of the filter.

32

6.3 Laplace transform

The Fourier transform is not suitable for causal systems because it requires the
whole signal from −∞ < t < +∞. What we need is a transform which works
with continuous causal signals. This is the Laplace transform:

LT(h(t)) = H(s) =
∫ ∞

0
h(t)e−stdt (77)

The Laplace transform has a couple of very useful properties:

• Integration: ∫
f(τ)dτ ⇔ 1

s
F (s) (78)

• Differentiation:
d

dt
f(t)⇔ sF (s) (79)

• Shift:
f(t− T)⇔ e−TsF (s) (80)

Proof:

LT(h(t− T)) =
∫ ∞

0
h (t− T)︸ ︷︷ ︸

causal

e−stdt (81)

=
∫ ∞

0
h(t)e−s(t+T)dt (82)

=
∫ ∞

0
h(t)e−ste−sTdt (83)

= e−sT
∫ ∞

0
h(t)e−stdt︸ ︷︷ ︸
H(s)

(84)

= e−sTH(s) (85)

• Convolution:
f(t) ∗ g(t)⇔ F (s)G(s) (86)

6.4 Filters

Fig. 14 presents a causal filter as a black box in continuous time. We send in a
signal and and we get a signal out of it. The operation of the filter is that of a
convolution of the input signal or a multiplication in the Laplace space:

g(t) = h(t) ∗ x(t)⇔ Y (s) = H(s) ·X(s) (87)

33

Figure 14: General idea of a filter and how to describe it: either with its impulse
response or with it’s Laplace transforms.

6.4.1 How to characterise filters?

1. Impulse Response

x(t) = δ(t) ← delta pulse (88)

h(t) = y(t) ← impulse response (89)

The filter is fully characterised by its impulse response h(t)

2. Transfer function The Laplace transform of the impulse response is called
Transfer Function. With the argument jω we get the frequency response
of the filter. What does the frequency response tell us about the filter?
The absolute value of the

|H(iω)| (90)

gives us the amplitude or magnitude for every frequency (compare the
Fourier transform). The angle of the term H(jω) gives us the phase shift:

ϕ = arg (H(iω)) (91)

of the filter. In this context the group delay can be defined as:

τω = −dϕ(ω)

dω
(92)

which is delay for a certain frequency ω. In many applications this should
be kept constant for all frequencies.

6.5 The z-transform

The Laplace transform is for continuous causal signals but in DSP we have
sampled signals. So, we need to investigate what happens if we feed a sampled

34

signal:

x(t) =
∞∑
n=0

x(n)δ(t− nT) Sampled signal (93)

into the Laplace transform:

X(s) =
∞∑
n=0

x(n)e−snT (94)

=
∫ ∞

0
x(n)e−stdt (95)

=
∞∑
n=0

x(n) (e−sT)n︸ ︷︷ ︸
z−1=e−sT

(96)

=
∞∑
n=0

x(n)(z−1)n z-transform (97)

What is e−sT = z−1? It’s a unit delay (see Eq. 80).

6.6 Frequency response of a sampled filter

Figure 15: Comparing the calculation of the frequency response in the continuous case
and sampled case.

Reminder: for analogue Signals we had H(s) with s = jω for the frequency
response. Let’s substitute s by z: z−1 = e−sT which gives us in general a
mapping between the continuous domain and the sampled domain:

z = esT (98)

35

With s = jω this gives us z = ejω and therefore the frequency response of the
digital filter is:

H(ejω) (99)

which then leads to the amplitude and phase response:

• Amplitude/Magnitude:
|H(eiω)| (100)

• Phase
argH(eiω) (101)

Fig. 15 shows the difference between continuous and sampled signal. While in
the continuous case the frequency response is evaluated along the imaginary axis,
in the sampled case it happens along the unit circle which makes the response
periodic! This is a subtle implication of the sampling theorem.

36

6.7 FIR Filter

Figure 16: FIR filter using the impulse response of the analogue filter h(t)

What happens if we sample the impulse response h(t) of an analogue filter?
Let’s find out:

h(t) =
∞∑
n=0

h(nT)δ(t− nT) (102)

If we transform it to the Laplace space it looks like this:

H(s) =
∞∑
n=0

h(nT)
(
e−sT

)
︸ ︷︷ ︸

z−1

n
(103)

Remember that e−sT has a very handy meaning: it is a delay by the unit time
step (Eq. 80). Thus z−n is a delay by n time steps. We can rewrite Eq. 103:

H(z) =
∞∑
n=0

h(nT)(z−1)
n

(104)

This is the z-transform of the impulse response h(t) of the filter.
We filter now the signal X(z) with H(z):

H(z)X(z) =
∞∑
n=0

h(nT)z−n

︸ ︷︷ ︸
H(z)

X(z) (105)

This sum is a direct recipe how to filter the signal X(z). We only need
the impulse response of the filter h(nT) and we can set up a digital filter (see
Fig. 16). Of course in practise this impulse response cannot run till infinity but
only for a limited number of samples. These are often called “taps”. So for
example a filter with 100 samples of h(nT) has 100 “taps”. This in turn then
requires a delay line which can hold M = 100 samples:

H(z)X(z) =
M∑

m=0

h(mT)z−m

︸ ︷︷ ︸
H(z)

X(z) (106)

37

Figure 17: Digital FIR filter with normalised frequency

This is the formula of an Finite Impulse Response filter where we have sampled
an analogue impulse response h(t) at time intervals of T . However, usually the
impulse response of the filter is directly derived in the digital domain where the
argument n of h(n) represents just the sample index n and the sampling interval
is implicitly the inverse of the sampling rate. For that reason one needs to
distinguish between:

H(z)X(z) =
M∑

m=0

hanalogue(mT)z−nX(z) (107)

H(z)X(z) =
M∑

m=0

hdigital(m)z−nX(z) (108)

=
M∑

m=0

h(m)z−m X(z) (109)

Eq 107 is the filter where the impulse response is based on an analogue
filter and Eq. 108 is based on the impulse response originating from a digital
filter design (see section 6.7.6 and 6.7.7) where the frequencies are normalised
frequencies from 0 to 0.5. From now on we will always refer to the “digital” one
(Eq. 108) and the subscript will be omitted (Eq. 109 & Fig. 17).

In the time domain the FIR filter is then doing the following operation:

y(n) =
M−1∑
m=0

h(m)x(n−m) (110)

6.7.1 Generally FIR filters do not perform a convolution operation

Remember that we have derived the FIR filters from the analogue domain by fil-
tering a signal (Eq.105). The timedomain representation of this is a discrete and
causal convolution operation (using the sampled Laplace transform). However,
the problem is that this runs to infinite time (see Eq 110) and would require

38

an infinite number of delay steps and thus infinite time to complete. So the
FIR filter at best performs an approximation of the convolution operation but
there are serious problems with the finite number of taps (N) which requires a
technique called windowing which moves it even further away from a convolution
operation. On the other hand if the impulse response is strictly limited in time
one can use this property for example for matched filters. However, the bottom-
line is that sweeping statements such as that “FIR filters perform a convolution”
are generally wrong if nothing is known of the impulse response.

6.7.2 FIR filter implementations

No matter the design process the implementation is always the same: we need
a delay line for the incoming signal and then weight the delayed outputs by the
different coefficients and for that reason are called (water-) “taps” (see Eqs. 107
& 108). We are now presenting different implementations.

• C++: This is a simple example of a filter which stores the values in a simple
linear buffer bufferFIR which stores the delayed values. The coefficients
are stored in coeffFIR.

float filter(float value) {

// shift

for (int i=taps-1;i>0;i--) {

bufferFIR[i]=bufferFIR[i-l];

}

//store new value

bufferFIR[0]=value;

//calculate result

for (int i=0;i<taps;i++) {

output +=bufferFIR[i]*coeffFIR[i];

}

return output;

}

• Python: Here, the FIR filter is implemented as a class which receives the
FIR filter coefficients in the constructor and then filters a signal sample by
sample in the function filter:

class FIR_filter:

def __init__(self,_coefficients):

self.ntaps = len(_coefficients)

39

self.coefficients = _coefficients

self.buffer = np.zeros(self.ntaps)

def filter(self,v):

self.buffer = np.roll(self.buffer,1)

self.buffer[0] = v

return np.inner(self.buffer,self.coefficients)

which again processes the signal sample by sample. It uses the numpy “roll”
command to shift the samples and then the inner product to calculate the
weighted sum between the buffer and the coefficients.

If one wants to filter a whole array one can use Python’s lfilter command:

import scipy.signal as signal

y = signal.lfilter(h,1,x)

This filters the signal x with the impulse response h. Note that this oper-
ation is on an array and thus a-causal.

More sophisticated code can be found in Teukolsky et al. (2007). This book is
strongly recommended for any C programmer who needs efficient solutions.

6.7.3 Fixed point FIR filters

Figure 18: Fixed point FIR filter. The output signal is bit shifted to the right by w
bits while the coefficients are scaled up by 2w.

These filters receive integer numbers as input, perform integer multiplica-
tions/additions and their outputs are integer as well. Thus, these filters do not
require a floating point unit on a processor.

Fig. 18 shows a fixed point FIR filter. The input x(n) is an integer variable
with I bit integers, the accumulator is an integer variable with A bits and the
output as well (usually the same as the input in terms of bit width).

40

In contrast to a floating point FIR filter we need to scale up the coefficients
so that they use full the integer range to avoid quantisation errors. For example
if the coefficients of h(n) range from −0.75 and +0.75 and we have signed 16
bit integers then the scaling factor is 2W ,W = 15.

However, the accumulator A which collects the data needs to have more bits
because it receives scaled input values at I bits precision and these multiplied by
factor 2W . If we have M taps then the additional bits we need is log2M . The
total number of bits we need in the accumulator in the worst case are:

A = I +W + log2M (111)

However, this is the worst case scenario because if the gain of the FIR filter
is below one then the summations by the M taps will only create temporary
overflows because integer numbers are cyclic in their representation. In case the
gain of the FIR filter is below one this can be relaxed:

A = I +W (112)

The actual bitwidth of the accumulator is usually the next integer size available
and also makes sure that in case the gain goes slightly over one in an unexpected
case that the filter still works. For example if I has 16 bits the accumulator has
probably 32 bits.

6.7.4 Constant group delay or linear phase filter

So far the FIR filter has no constant group delay which is defined by:

τω = −dϕ(ω)

dω
(113)

This means that different frequencies arrive at the output of the filter earlier
or later. This is not desirable. The group delay τω should be constant for all
frequencies ω so that all frequencies arrive at the same time at the output y of
the filter.

A constant group delay can be achieved by restricting ourselves to the transfer
function:

H(eiω) = B(ω)e−iωτ+iϕ (114)

where B(ω) is real and the phase is only defined by the exponential. The phase
of this transfer function is then trivially ωτ+ϕ. The group delay is the derivative
of this term which is constant.

Eq. 114 now imposes restrictions on the impulse response h(t) of the filter.
To show this we use the inverse Fourier transform of Eq. 114 to get the impulse
response:

h(n) =
1

2π

∫ +∞

−∞
H(eiω)eiωndω (115)

41

After some transformations we get:

h(n+ τ) =
1

2π
eiϕb(n) (116)

where b(n) represents the Fourier coefficients of B(ω). Since B is real the
coefficients b(n) have the property b(n) = b∗(−n). Thus we get a second
impulse response:

h(n+ τ) =
1

2π
eiϕb∗(−n) (117)

Now we can eliminate b by equating Eq. 116 and Eq. 117 which yields:

h(n+ τ) = e2iϕn∗(−n+ τ) (118)

With the shift τ we have the chance to make the filter “more” causal. We can
shift the impulse response in positive time to get h(n) zero for n < 0. In a
practical application we shift the impulse response by half the number of delays.
If we have a filter with M taps we have to delay by τ = M/2.

The factor e2iϕ restricts the values of ϕ because the impulse response must
be real. This gives us the final FIR design rule:

h(n+M/2) = (−1)kh(−n+M/2) (119)

where k = 0 or 1. This means that the filter is either symmetric or antisymmetric
and the impulse response has to be delayed by τ = M/2.

6.7.5 Window functions

So far we still have a infinite number of coefficients for for the FIR filter because
there’s no guarantee that the impulse response becomes zero after M/2 delays.
Thus, we have to find a way to truncate the response without distorting the filter
response.

The standard technique is to multiply the coefficients with a window function
which becomes and stays zero at a certain coefficient n > N so that Eq. 106
need not to run to infinity:

H(z)X(z) =
N∑

n=0

h(nT)w(nT)︸ ︷︷ ︸ z−nX(z) (120)

1. Rectangular window: truncating the impulse response. Problem: we get
ripples in the frequency-response. The stop-band damping is poor

2. Triangular or Bartlett window: greatly improved stop-band attenuation.

42

Figure 19: Different window functions applied to a low pass filter (Eq. 132) with cutoff
at f = 0.1 and 100 taps.

3. Hanning and Hamming window: standard windows in many applications.

w(n) = α− (1− α) cos
(
2πn

M

)
(121)

• Hamming: α = 0.54

43

• Hanning: α = 0.5

4. Blackman window:

w(n) = 0.42 + 0.5 cos
(
2πn

M

)
+ 0.08 cos

(
4πn

M

)
(122)

5. Kaiser window: control over stop- and passband. No closed form equation
available.

To illustrate how window functions influence the frequency response we have
taken an impulse response of a lowpass filter (fc = 0.1) and applied different
window functions to it (Fig. 19).

Note that the higher the damping the wider the transition from pass- to
stopband. This can be seen when comparing the Blackman window with the
Hamming window (Fig. 19). For the lowpass filter this seems to be quite similar.
However, for a bandstop filter the wider transition width might lead actually to
very poor stopband damping. In such a case a Hamming window might be a
better choice.

6.7.6 Python code: impulse response from the inverse DFT - The
frequency sampling method

Imagine that we want to remove 50Hz from a signal with sampling rate of 1kHz.
We define an FIR filter with 100 taps. The midpoint N/2 = 50 corresponds to
500Hz. The 50Hz correspond to index 5.

f_resp=np.ones(100)

note we need to add "+1" to the end because the end of

the range is not included.

f_resp[4:6+1]=0

f_resp[94:96+1]=0

hc=np.fft.ifft(f_resp)

h=np.real(hc)

this is from index 0 to index 49 on the left

and on the right hand side from index 50 to index 99

h_shift[0:50]=h[50:100]

h_shift[50:100]=h[0:50]

h_wind=h_shift*hamming(100)

To get a nice symmetric impulse response we need to shift the inverse around 50
samples.

44

6.7.7 FIR filter design from ideal frequency response – The analytical
way

For many cases the impulse response can be calculated analytically. The idea is
always the same: define a function with the ideal frequency response

|H(ejω)| = B(ejω)︸ ︷︷ ︸
real

(123)

and perform an inverse Fourier transform to get the impulse response h(n).
We demonstrate this with a lowpass filter:

|H(ejω)| =
{

1 for |ω| ≤ ωc

0 for ωc < |ω| ≤ π
(124)

Use the inverse Fourier transform to get the impulse response:

h(n) =
1

2π

∫ π

−π
H(ejω)ejωndω (125)

=
1

2π

∫ +ωc

−ωc

ejωndω (126)

=
1

2π

[
1

jn
ejωn

]+ωc

−ωc

(127)

=
1

2πjn

(
ejωcn − e−jωcn

)
(128)

With these handy equations:

sin z =
1

2j
(ezj − e−zj) (129)

cos z =
1

2
(ezj + e−zj) (130)

we get for the filter:

h(n) =

{
1
πn

sinωcn for n ̸= 0
ωc

π
for n = 0

(131)

This response is a-causal! However we know that we can shift the response by
any number of samples to make it causal! And we have to window the response
to get rid of any remaining negative contribution and to improve the frequency
response.

Highpass, bandstop and bandpass can be calculated in exactly the same way
and lead to the following ideal filter characteristics:

45

• Lowpass with cutoff frequency ωc = 2πfc:

h(n) =

{
ωc

π
for n = 0

1
πn

sin(ωcn) for n ̸= 0
(132)

• Highpass with the cutoff frequency ωc = 2πfc:

h(n) =

{
1− ωc

π
for n = 0

− 1
πn

sin(ωcn) for n ̸= 0
(133)

• Bandpass with the passband frequencies ω1,2 = 2πf1,2:

h(n) =

{
ω2−ω1

π
for n = 0

1
πn
(sin(ω2n)− sin(ω1n)) for n ̸= 0

(134)

• Bandstop with the notch frequencies ω1,2 = 2πf1,2:

h(n) =

{
1− ω2−ω1

π
for n = 0

1
πn
(sin(ω1n)− sin(ω2n)) for n ̸= 0

(135)

See Diniz (2002, p.195) for more impulse responses.
Here is an example code for a bandstop filter which fills the array h with the

analytically calculated impulse response:

f1 = 45.0/fs

f2 = 55.0/fs

n = np.arange(-200,200)

h = (1/(n*np.pi))*(np.sin(f1*2*np.pi*n)-np.sin(f2*2*np.pi*n))

h[200] = 1-(f2*2*np.pi-f1*2*np.pi)/np.pi;

h = h * np.hamming(400)

After the function has been calculated it is windowed so that the cut off is
smooth. It’s not very elegant as it’s causes a division by zero first and then the
coeffecient at 200 is fixed. Do it better!

6.7.8 Design steps for FIR filters

Here are the design steps for an M tap FIR filter.

1. Get yourself an impulse response for your filter:

(a) Create a frequency response “by hand” just by filling an array with
the desired frequency response. Then, perform an inverse Fourier
transform (see section 6.7.6).

46

(b) Define a frequency response analytically. Do an inverse Fourier trans-
form (see section 6.7.7).

(c) Use an analogue circuit, get its impulse response and use these as
filter coefficients.

(d) Dream up directly an impulse response (for example, averagers, dif-
ferentiators, etc)

2. Mirror the impulse response (if not already symmetrical)

3. Window the impulse response from an infinite number of samples to M
samples.

4. Move the impulse response to positive time so that it becomes causal
(move it M/2 steps to the right).

6.7.9 FIR filter design with Python’s high level functions

The “firwin” command generates the impulse response of a filter with m taps
and also applies a default window function. For example:

from scipy.signal import firwin

h = firwin(m,2*f)

generates a lowpass FIR filter with the normalised frequency f. Note the factor
two because in scipy the normalisation is not the sampling rate but the nyquist
frequency. To be compatible with the math here the easiest approach is to
multiply the frequency by 2. With this command one can also design high pass,
bandstop and bandpass filters. Type help(firwin) which provides examples for
all filter types and which parameters need to be set.

6.7.10 Signal Detection: Matched filter

How can I detect a certain event in a signal? With a correlator. Definition of a
correlator?

e(t) =
∫ t

0
s(τ)︸ ︷︷ ︸
signal

r(τ)︸ ︷︷ ︸
template

d(τ) (136)

How to build a correlator with a filter? Definition of filtering?

e(t) =
∫ ∞

0
s(τ)h(t− τ)dτ (137)

NB. h - integration runs backwards. However we used an int forward! h(t) :=
r(T − τ), only valid for 0 . . . T .

47

e(t) =
∫ T

0
s(τ)r (T − (t− τ)) dτ (138)

=
∫ T

0
s(τ)r(T − t+ τ)dτ (139)

for t := T we get:

e(T) =
∫ ∞

0
s(τ)r(τ)dτ (140)

h(t) := r(T − t)︸ ︷︷ ︸
matched filter!

(141)

In order to design a detector we just create an impulse response h by reversing
the template r in time and constructing an FIR filter with it.

How to improve the matching process? Square the output of the filter!

6.7.11 Adaptive FIR Least Mean Squares (LMS) filters

So far the coefficients of the FIR filter have been constant but now we are going
to allow them to change while the FIR filter is operating so that it can learn its
own coefficients. The idea is to use an error signal e(n) to tune the coefficients
h(n) of the FIR filter (see Fig. 20A) by comparing its output y(n) with a desired
output d(n):

e(n) = d(n)− y(n) (142)

and tuning the FIR filter in a negative feedback loop till the average of e(n) is
zero.

We need to derive how the error e(n) can change the FIR filter coefficients
so that the error is actually minimised. This can be expressed as a so called
“gradient descent” which minimises the squared error 1

2
e(n)2 because both a

positive and a negative error are equally bad:

∆hm = −µ
∂
(
1
2
e(n)2

)
∂hm

(143)

where ∆hm(n) is the change of the coefficient hm(n) at every time step: hm(n+
1) = hm(n) + ∆hm(n). µ ≪ 1 defines how quickly the coefficients hm change
at every time step and is called the “learning rate”. Note here the change in
notation of the FIR filter coefficients hm which are changing much slower than
the sampled signals e(n), d(n) and y(n) and can still be seen as constant for
the realtime filtering operation. Thus, we have n for the sample by sample
processing as before and the index m of hm for the very slowly changing FIR

48

Figure 20: Adaptive FIR filter : A) Negative feedback loop where a desired signal d(n)
is compared with the output of the FIR filter y(n) and creates the error signal e(n)
which then tunes the FIR filter. B) Internal workings of the adaptive FIR filter where
the error signal e(n) is multiplied with the delayed input signal x(n − m) and then
changes the FIR filter coefficients hm.

filter coefficients. To gain some intuition why Eq. 143 mimimises the error e(n)
we look at what happens if we increase the FIR coefficient hm a little bit, for
example, by the small amount of |ϵ| ≪ 1: hm := hm + ϵ. Then we can observe
two cases:

1. The squared error e(n)2 increases so we need to decrease hm as it makes
it worse.

2. The squared error e(n)2 decreases so we need to increase hm as it makes
it better.

This also works in the same way if we decrease hm by a small amount. Thus
from both directions this always minimises the error. This is basically a carrot &
stick approach where the coefficients hm are being “rewarded” if they minimise
the error and “punished” if they make the error larger. This approach is called
“Least Mean Squares” (LMS) as it minimises the squared error on average. It’s
also known from neural networks where the hm are called the “weights” of a
neuron (see delta rule).

49

Eq 143 now needs to be turned into a form which can directly run in software
by solving its partial derivative by inserting Eqs. 142 and 110.

∆hm = −µ1
2

∂ (d(n)− y(n))2

∂hm

(144)

= −µ1
2

∂
(
d(n)−∑M−1

m=0 hm · x(n−m)
)2

∂hm

(145)

= µ (d(n)− y(n)) · x(n−m) (146)

= µ · e(n) · x(n−m) (147)

Note that x(n−m) emerges because of the chain rule when partially differentiat-
ing the output y(n) which depends on the sum of the delay lines of the FIR filter
(see Eq 110). Eq. 147 is now our “learning” rule which can simply be applied to
the FIR filter as showm in Fig 20B.

Now we have the recipe of an adaptive filter where the FIR filter minimises its
own error e(n) in a negative feedback loop and generating an output y(n) which
is as closely as possible to the desired signal d(n). The signal y(n) is often called
“the remover” as it cancels out the signal d(n). However, not everything in d(n)
is cancelled out but only what is correlated with the input x(n). This means
that the error signal e(n) will not be zero but will contain any signal components
which are not correlated with x(n). This means that the error signal actually is
also the cleaned up output signal of the adaptive filter.

Imagine you want to remove 50 Hz mains from a signal

d(n) = signal(n) + 50Hz noise(n) (148)

then one would provide 50 Hz mains via

x(n) = 50Hz noise(n) (149)

so that then the filter learns to remove the powerline interference. One might
think that the filter will remove everything from d(n) because it will try to
minimise the error e(n) but only the 50 Hz in the contaminated signal will be
removed because only signal components which are correlated between x(n) and
d(n) will be removed. The cleaned up signal will be identical to the error signal:

e(n) = signal(n) (150)

50

6.8 IIR Filter

IIR filter stands for Infinite Impulse Response. Such filters have feedback so that
signals are processed in a recursive way. We will see that impulse responses from
exponentials can easily be implemented as a recursive filter.

6.8.1 Introduction

As an instructional example we take a very simple analogue filter and sample it.
This can then be generalised to more complex situations.

We define a first order filter which can be implemented, for example, as a
simple RC network:

h(t) = e−bt (151)

where its Laplace transform is a simple fraction:

H(s) =
1

s+ b
(152)

Now we sample Eq. 151:

h(t) =
∞∑
n=0

e−bnT · δ(t− nT) (153)

and perform a Laplace transform on it:

H(s) =
∞∑
n=0

e−bnT e−nsT︸ ︷︷ ︸
z−1n

(154)

which turns into a z-transform:

H(z) =
∞∑
n=0

e−bnT z−n (155)

=
∞∑
n=0

(
e−bT z−1

)n
(156)

=
1

1− e−bT z−1
(157)

Consequently the analogue transfer function H(s) transfers into H(z) with the
following recipe:

H(s) =
1

s+ b
⇔ H(z) =

1

1− e−bT z−1
(158)

51

Thus, if you have the poles of an analogue system and you want to have the
poles in the z-plane you can transfer them with:

z∞ = es∞T (159)

This also gives us a stability criterion. In the Laplace domain the poles have to
be in the left half plane (real value negative). This means that in the sampled
domain the poles have to lie within the unit circle.

The same rule can be applied to zeros

z0 = es0T (160)

together with Eq. 159 this is called “The matched z-transform method”. For
example H(s) = s turns into H(z) = 1− z−1e0T = 1− z−1 which is basically a
DC filter.

6.8.2 Determining the data-flow diagram of an IIR filter

Figure 21: IIR filter

To get a practical implementation of Eq. 157 we have to see it with its input-
and output-signals:

Y (z) = X(z)H(z) (161)

= X(z)
1

1− e−bT z−1
(162)

= Y (z)z−1e−bT +X(z) (163)

We have to recall that z−1 is the delay by T . With that information we directly
have a difference equation in the temporal domain:

y(nT) = y([n− 1]T)e−bT + x(nT) (164)

52

This means that the output signal y(nT) is calculated by adding the weighted
and delayed output signal y([n − 1]T) to the input signal x(nT). How this
actually works is shown in Fig. 21. The attention is drawn to the sign inversion
of the weighting factor e−bT in contrast to the transfer function Eq. 158 where it
is −e−bT . In general the recursive coefficients change sign when they are taken
from the transfer function.

6.8.3 General form of IIR filters

A filter with forward and feedback components can be represented as:

H(z) =

∑r
k=0Bkz

−k

1 +
∑m

l=1Aiz−l
(165)

where Bk are the FIR coefficients and Al the recursive coefficients. Note the
signs of the recursive coefficients are inverted in the actual implementation of
the filter. This can be seen when the function H(z) is actually multiplied with
an input signal to obtain the output signal (see Eq. 164 and Fig. 21). The “1”
in the denominator represents actually the output of the filter. If this factor is
not one then the output will be scaled by that factor. However, usually this is
kept one.

In Python filtering is performed with the command:

import scipy.signal as signal

Y = signal.lfilter(B,A,X)

where B are the FIR coefficients, A the IIR coefficients and X is the input. For
a pure FIR filter we just have:

Y = signal.lfilter(B,1,X)

The “1” represents the output.

6.8.4 IIR filter topologies

In real applications one would create a chain of 2nd order IIR filters. This has
numerous advantages:

1. The optimisation can be done within these simple structures, for example
omitting array operations completely and coding the 2nd order filters in
assembly while keeping the higher level operations in C or C++.

53

Figure 22: A) Direct Form I filter which one accumulator and B) Direct Form II filter
with two accumlators.

2. Control of stability issues: high order recursive systems might become
unstable and it is very hard to predict when this might happen. On the
other hand a chain of 2nd order filters can be made stable with ease. One
can focus on stability in 2nd order systems which is well understood and
manageable.

3. Complex conjugate pole pairs are generated naturally in analogue filter
design and directly translate to 2nd order IIR structures. Analogue design
is usually described as 2nd order structures (=LCR) so that any transform
from analogue to digital just needs to be of 2nd order!

Fig. 22 shows the most popular filter topologies: Direct Form I and II. Because
of the linear operation of the filter one is allowed to do the FIR and IIR operations
in different orders. In Direct From I we have one accumulator and two delay lines
whereas in the Direct Form II we have two accumulators and one delay line. Only
the Direct Form I is suitable for integer operations.

A Python class of a direct form II filter can be implemented with a few lines:

class IIR_filter:

def __init__(self,_num,_den):

self.numerator = _num

self.denominator = _den

self.buffer1 = 0

self.buffer2 = 0

def filter(self,v):

input=0.0

output=0.0

input=v

54

output=(self.numerator[1]*self.buffer1)

input=input-(self.denominator[1]*self.buffer1)

output=output+(self.numerator[2]*self.buffer2)

input=input-(self.denominator[2]*self.buffer2)

output=output+input*self.numerator[0]

self.buffer2=self.buffer1

self.buffer1=input

return output

Here, the two delay steps are represented by two variables buffer1 and buffer2.
In order to achive higher order filters one can then just chain these 2nd order

filters. In Python this can be achieved by storing these in an array of instances
of this class.

6.8.5 Fixed point IIR filters

Figure 23: Direct Form I filter with fixed point arithmetic.

Fig. 23 shows the implementation of a fixed point IIR filter. It’s a Direct Form
I filter with one accumulator so that temporary overflows can be compensated.
The original floating point IIR coefficients are scaled up by factor 2w so that they
max out the range of the integer coefficients. After the addition operation they
are shifted back by w bits to their original values.

For example if the largest IIR coefficient is 1.9 and we use 16 bit signed
numbers (max number is 32767) then one could multiply all coefficients with
214.

Then one needs to assess the maximum value in the accumulator which is
much more difficult than for FIR filters. For example, resonators can generate
high output values with even small input values so that it’s advisable to have a
large overhead in the accumulator. For example if the input signal is 16 bit and
the scaling factor is 14 bits then the signal will certainly occupy 16+14 = 30 bits.
With an accumulator of 32 bits that gives only a headroom of 2 bits so the output
can only be 4 times larger than the input. A 64 bit accumulator is a safe bet.

55

6.8.6 Filter design based on analogue filters

X

X

X

X

X

X

Re

Im

s

W

th
re

e
 2

n
d
 o

rd
e
r

fi
lt
e
rs

1st

2nd

3rd

Figure 24: Pole placements of the Butterworth filter. Its analogue cutoff frequency
is Ω = 2πF where F is the analogue cutoff frequency in Hertz. This filter can
be implemented as a chain of 2nd order IIR filters (biquads) by using the complex
conjugate pairs for the different 2nd order IIR filters.

Most IIR filters are designed from analogue filters by transforming from the
continuous domain (h(t), H(s)) to the sampled domain (h(n), H(z)).

A list of popular analogue transfer functions being used for IIR filter
design:

• Butterworth: All poles lie on the left half plane equally distributed on a
half circle with radius Ω = 2πF which is shown in Fig. 24. The Butterworth
filter is by far the most popular filter. Here are its properties:

– monotonic frequency response

– only poles, no zeros

– the Poles have analytical solution and very easy to calculate

– no constant group delay but usually acceptable deviation from a strict
constant group delay for many applications.

• Chebyshev Filters:

|H(Ω)|2 = 1

1− ε2TN(Ω/Ωp)
(166)

where T = Chebyslev polynomials. These filters have either ripples in
the stop or passband depending on the choice of polynomials. As with

56

Butterworth the polynomials have analytical solutions for the poles and
zeros of the filter so that their design again is straightforward.

• Bessel Filter:

– Constant Group Delay

– Shallow transition from stop- to passband

– No analytical solution for the poles/zeros.

How to transform the analogue lowpass filters into highpass, bandstop or
bandpass filters? All the analogue transfer functions above are lowpass filters.
However this is not a limitation because there are handy transforms which take
an analogue lowpass transfer function or poles/zeros and then transforms them
into highpass, bandpass and stopband filters. These rules can be found in any
good analogue filter design book and industry handouts, for example from Analog
Devices.

Bilinear Transform: transforming the analoge transfer function into a
digital one: As a next step these analogue transfer functions H(s) need to
be transformed to digital transfer functions H(z). This could be done by the
matched z-transform. However, the problem with these methods is that they
map frequencies 1:1 between the digital and analogue domain. Remember: in
the sampled domain there is no infinite frequency but Fs/2 which is the Nyquist
frequency. This means that we never get more damping than at Nyquist Fs/2.
This is especially a problem for lowpass filters where damping increases the higher
the frequency.

The solution is to map all analogue frequencies from 0 . . .∞ to the sampled
frequencies 0 . . . 0.5 in a non-linear way:

−∞ < Ω <∞⇒ −π ≤ ω ≤ π (167)

This is called Bilinear Transformation:

s =
2

T

z − 1

z + 1
(168)

This rule replaces all s with z in our analogue transfer function so that it’s now
digital. However, the cutoff frequency Ωc is still an analogue one but if we
want to design a digital filter we want to specify a digital cutoff frequency. Plus
remember that the frequency mapping is non-linear so that there is non-linear
mapping also of the cutoff.

57

In the analogue domain the frequency is given as s = jΩ and in the sampled
domain as z = ejω. With the definition of the bilinear transform we can establish
how to map from our desired digital cutoff to the analogue one:

jΩ =
2

T

[
ejω − 1

ejω + 1

]
=

2

T
j tan

ω

2
(169)

This derivation is useful for two purposes. It shows the non-linear mapping
between the digital and analogue world and it provides a recipe how to calculate
our analogue cutoff frequency.

That the bilinear transform is a nonlinear mapping between the analogue
world and the digital world can be directly seen by just omitting the j:

Ω =
2

T
tan

ω

2
(170)

This also means that the cut-off frequency of our analogue filter is changed
by the bilinear transformation. Consequently, we need to apply the same trans-
formation to the cutoff frequency itself:

Ωc =
2

T
tan

ωc

2
(171)

where T is the sampling interval. This is often called “pre-warp” but is simply
the application of the same rule to the cut-off frequency as what the bilinear
transform does to the transfer function H(s). It has also another important
result: we can now finally specify our cut-off in the sampled domain in normalised
frequencies ωc = 2πfc by using Eq. 171. After all we just use the analogue filter
as a vehicle to design a digital filter.

We can now list our design steps.

IIR filter design steps:

1. Choose the cut-off frequency of your digital filter ωc.

2. Calculate the analogue cutoff frequency ωc → Ωc with Eq. 171

3. Choose your favourite analogue lowpass filter H(s), for example Butter-
worth.

4. Replace all s in the analogue transfer function H(s) by s = 2
T

z−1
z+1

to obtain
the digital filter H(z)

5. Change the transfer function H(z) so that it only contains negative powers
of z (z−1, z−2, . . .) which can be interpreted as delay lines.

58

6. Build your IIR filter!

For filter-orders higher than two one needs to develop a different strategy
because the bilinear transform is a real pain to calculate for anything above the
order of two. Nobody wants to transform high order analogue transfer functions
H(s) to the H(z) domain. However, there is an important property of all ana-
logue transfer functions: they generate complex conjugate pole pairs (plus one
real pole if of of odd order) which suggest a chain of 2nd order IIR filters straight
away (see Fig. 24). Remember that a complex conjugate pole pair creates a 2nd
order IIR filter with with two delay steps. A real pole is a 1st order IIR filter
with one delay but is often also implemented as a 2nd order filter where the
coefficients of the 2nd delay are kept zero.

The design strategy is thus to split up the analogue transfer function H(s)
in a chain of 2nd order filters H(s) = H1(s)H2(s)H3(s) . . . and then to apply
the bilinear transform on every 2nd order term separately. Using this strategy
you only need to calculate the bilinear transform once for a 2nd order system
(or if the order is odd then also for a 1st order one) but then there is no need
to do any more painful bilinear transforms. This is standard practise in IIR filter
design.

Time or frequency domain? The transforms from analogue to digital alter
both the temporal response and the frequency response. However the different
transforms have different impact. The bilinear transform guarantees that the
digital filter uses the whole frequency range of the analogue filter from zero to
infinity which is the best solution for frequency domain problems. However, if
one needs to reproduce the temporal response an analogue filter as faithfully as
possible then the matched z transform is best because it’s based (as the name
suggests) on the impulse invariance method which aims to preserve the temporal
behaviour of the filter (exact for pole-only transfer functions).

Identical frequency response required: Bilinear transform
Identical temporal behaviour required: Matched z-transform

Of course a 100% match won’t be achieved but in practise this can be as-
sumed. In most cases the bilinear transform is the transform of choice. The
matched z transform can be very useful, for example in robotics where timing is
important.

6.8.7 Adaptive IIR filter: The Kalman filter

Often signals are contaminated by high frequency noise where the spectrum of
the noise is changing or not known. The cutoff of a fixed low pass filter is not

59

known or might be changing so that we need to adapt the cut-off continuously.
One example is a Kalman filter which maximises the predictability of the filtered
signal. It’s an adaptive lowpass filter which increases the predictability of a signal
because it smoothes it.

H(z) =
b

1− az−1
(172)

The parameter a determines the cutoff frequency. Frequency Response :

|H(ejω)| = | b

1− ae−jω
| (173)

Let’s re-interpret our low-pass filter in the time domain:

y(n)︸ ︷︷ ︸
actual estimate

= a(n) y(n− 1)︸ ︷︷ ︸
previous estimate

+b(n) x(n)︸ ︷︷ ︸
current data sample

(174)

We would like to have the best estimate for y(n)

p(n) = E[(y(k)− yreal(k))
2] (175)

We need to minimise p which gives us equations for a and b which implements
a Kalman filter.

6.8.8 The role of poles and zeros

Transfer functions contain poles and zeros. To gain a deeper understanding of
the transfer functions we need to understand how poles and zeros shape the
frequency response of H(z). The position of the poles also determines the
stability of the filter which is important for real world applications.

We are going to explore the roles of poles and zeros first with an instructional
example which leads to a 2nd order bandstop filter.

Zeros Let’s look at the transfer function:

H(z) = (1− ejω0z−1)(1− e−jω0z−1) (176)

= 1− z−1ejω−0 + z−2 (177)

= 1− z−1(ejω0 + e−jω0) + z−2 (178)

= 1− z−12 cosω0 + z−2 (179)

which leads to the data flow diagram shown in Fig 25.

H(ejω) = (1− ejω0e−jω)(1− e−jω0e−jω)︸ ︷︷ ︸
2 zeros

(180)

60

Figure 25: A two tap FIR stopband filter for the frequency ω0.

The zeroes at ejω0 and e−jω0 eliminate the frequencies ω0 and −ω0.
A special case is ω0 = 0 which gives us:

H(z) = (1− e0z−1)(1− e0z−1) (181)

= 1− 2z−1 + z−2 (182)

a DC filter.
In summary: zeros eliminate frequencies (and change phase). That’s the idea

of an FIR filter where loads of zeros (or loads of taps) knock out the frequencies
in the stopband.

Figure 26: A two tap IIR resonator for the frequency ω0 and with the amplification r.

Poles While zeros knock out frequencies, poles amplify frequencies. Let’s in-
vestigate complex conjugate poles:

H(z) =
1

(1− rejω0z−1)(1− re−jω0z−1)︸ ︷︷ ︸
2poles!

(183)

which are characterised by their resonance frequency ω0 and the amplification
0 < r < 1.

61

In order to obtain a data flow diagram we need to get powers of z−1 because
they represent delays.

H(z) =
1

1− 2r cos(ω0)z−1 + r2z−2
(184)

which we multiply with the input signal Y (z):

Y (z) = X(z)
1

1− 2r cos(ω)z−1 + r2z−2
(185)

X(z) = Y (z)− Y (z)2r cos(ω0)z
−1 + Y (z)r2z−2 (186)

Y (z) = X(z) + z−1Y (z)2r cos(ω0)− z−2Y (z)r2 (187)

This gives us a second order recursive filter (IIR) which is shown in Fig 26. These
complex conjugate poles generate a resonance at ±ω0 where the amplitude is
determined by r.

Stability A transfer function H(z) is only stable if the poles lie inside the unit
circle. This is equivalent to the analog case where the poles of H(s) have to lie
on the left hand side of the complex plane (see Eq. 159). Looking at Eq. 183 it
becomes clear that r determines the radius of the two complex conjugate poles.
If r > 1 then the filter becomes unstable. The same applies to poles on the real
axis. Their the real values have to stay within the range −1 . . .+ 1.

In summary: poles generate resonances and amplify frequencies. The ampli-
fication is strongest the closer the poles move towards the unit circle. The poles
need to stay within the unit circle to guarantee stability.

Note that in real implementations the coefficients of the filters are limited in
precision. This means that a filter might work perfectly in python but will fail
on a DSP with its limited precision. You can simlate this by forcing a certain
datatype in python or you write it properly in C.

Poles and zeroes combined: design of a pure digital IIR notch filter
Now we combine the filters from the last two sections:

H(z) =
1− 2 cos(ω0)z

−1 + z−2

1− 2r cos(ω0)z−1 + r2z−2
(188)

This gives us a notch filter where its width is tunable with the help of r < 1.
The closer r goes towards 1 the more narrow is the frequency response. This
filter has two poles and two zeros. The zeros sit on the unit circle and eliminate
the frequencies ±ω0 while the poles sit within the unit circle and generate a
resonance around ±ω0. As long as r < 1 this resonance will not go towards
infinity at ±ω0 so that the zeros will always eliminate the frequencies ±ω0.

62

Figure 27: A two tap IIR bandstop filter with tuneable stopband width r for the
frequency ω0.

Identifying filters from their poles and zeroes Proakis and Manolakis
(1996, pp.333) has an excellent section about this topic and we refer the reader
to have a look. As a rule of thumb a digital lowpass filter has poles where their
real parts are positive and a highpass filter has poles with negative real part of
the complex poles. In both cases they reside within the unit circle to guarantee
stability.

References

Diniz, P. S. R. (2002). Digital Signal Processing. Cambridge university press,
Cambridge.

Proakis, J. G. and Manolakis, D. G. (1996). Digital Signal Processing. Prentice-
Hall, New Jersey.

Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd
edition.

63

	Acknowledgements
	Introduction
	Suggested reading
	Advantages of digital signal processing
	Development boards

	Python
	How to use Python?
	Packages/Modules
	Data types
	Control structures
	Functions
	Classes
	Mathematical functions
	Plotting of Functions
	Importing data

	Signal conversion
	Sampling
	Normalised frequency
	Nyquist frequency
	Sampling theorem

	Quantisation

	Frequency representation of signals
	Continuous time and frequency
	Periodic signals
	A-periodic signals

	Sampled time and/or frequency
	Discrete time Fourier Transform (DTFT)
	The effect of time domain sampling on the spectrum (Sampling theorem)
	Discrete Fourier Transform (DFT)
	Properties of the DFT
	Problems with finite length DFTs
	Fast Fourier Transform

	Software
	Visualisation

	Causal Signal Processing
	Causality
	Convolution of Causal Signals
	Laplace transform
	Filters
	How to characterise filters?

	The z-transform
	Frequency response of a sampled filter
	FIR Filter
	Generally FIR filters do not perform a convolution operation
	FIR filter implementations
	Fixed point FIR filters
	Constant group delay or linear phase filter
	Window functions
	Python code: impulse response from the inverse DFT - The frequency sampling method
	FIR filter design from ideal frequency response – The analytical way
	Design steps for FIR filters
	FIR filter design with Python's high level functions
	Signal Detection: Matched filter
	Adaptive FIR Least Mean Squares (LMS) filters

	IIR Filter
	Introduction
	Determining the data-flow diagram of an IIR filter
	General form of IIR filters
	IIR filter topologies
	Fixed point IIR filters
	Filter design based on analogue filters
	Adaptive IIR filter: The Kalman filter
	The role of poles and zeros

