Pan: Drag the map with the mouse. Zoom: Press the ALT-key and turn the mouse-wheel.

Bibliography

Aghajanian, G. K., Sprouse, J. S., Sheldon, P., and Rasmussen, K. (1990).
Electrophysiology of the central serotonin system: receptor subtypes and transducer mechanisms.
Annals of the New York Academy of Sciences, 600:93–103; discussion 103.

Alheid, G. F. (2003).
Extended amygdala and basal forebrain.
Annals of the New York Academy of Sciences, 985:185–205.

Aquili, L., Liu, A. W., Shindou, M., Shindou, T., and Wickens, J. R. (2014).
Behavioral flexibility is increased by optogenetic inhibition of neurons in the nucleus accumbens shell during specific time segments.
Learning & memory (Cold Spring Harbor, N.Y.), 21(4):223–231.

Araki, M., McGeer, P. L., and McGeer, E. G. (1984).
Retrograde hrp tracing combined with a pharmacohistochemical method for gaba transaminase for the identification of presumptive gabaergic projections to the habenula.
Brain research, 304(2):271–277.

Bari, A. and Robbins, T. W. (2013).
Inhibition and impulsivity: behavioral and neural basis of response control.
Progress in neurobiology, 108:44–79.

Barrot, M., Sesack, S. R., Georges, F., Pistis, M., Hong, S., and Jhou, T. C. (2012).
Braking dopamine systems: a new gaba master structure for mesolimbic and nigrostriatal functions.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 32(41):14094–14101.

Basar, K., Sesia, T., Groenewegen, H., Steinbusch, H. W. M., Visser-Vandewalle, V., and Temel, Y. (2010).
Nucleus accumbens and impulsivity.
Progress in neurobiology, 92(4):533–557.

Bayer, H. M. and Glimcher, P. W. (2005).
Midbrain dopamine neurons encode a quantitative reward prediction error signal.
Neuron, 47(1):129–141.

Beckstead, R. M., Domesick, V. B., and Nauta, W. J. (1979).
Efferent connections of the substantia nigra and ventral tegmental area in the rat.
Brain research, 175(2):191–217.

Berridge, K. C. (2009).
'liking' and 'wanting' food rewards: brain substrates and roles in eating disorders.
Physiology & behavior, 97(5):537–550.

Berthoud, H. (2004).
Mind versus metabolism in the control of food intake and energy balance.
Physiol Behav, 81(5):781–793.

Boulougouris, V. and Robbins, T. W. (2010).
Enhancement of spatial reversal learning by 5-ht2c receptor antagonism is neuroanatomically specific.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(3):930–938.

Bourdy, R. and Barrot, M. (2012).
A new control center for dopaminergic systems: pulling the vta by the tail.
Trends in neurosciences, 35(11):681–690.

Brog, J., Salyapongse, A., Deutch, A., and Zahm, D. (1993a).
The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold.
J Comp Neurol, 338(2):255–278.

Brog, J. S., Salyapongse, A., Deutch, A. Y., and Zahm, D. S. (1993b).
The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold.
The Journal of comparative neurology, 338(2):255–278.

Bromberg-Martin, E. S., Matsumoto, M., and Hikosaka, O. (2010).
Dopamine in motivational control: rewarding, aversive, and alerting.
Neuron, 68(5):815–834.

Burattini, C., Battistini, G., Tamagnini, F., and Aicardi, G. (2014).
Low-frequency stimulation evokes serotonin release in the nucleus accumbens and induces long-term depression via production of endocannabinoid.
Journal of neurophysiology, 111(5):1046–1055.

Carhart-Harris, R. L. and Nutt, D. J. (2017).
Serotonin and brain function: a tale of two receptors.
Journal of psychopharmacology (Oxford, England), 31(9):1091–1120.

Carr, D. B. and Sesack, S. R. (2000).
Gaba-containing neurons in the rat ventral tegmental area project to the prefrontal cortex.
Synapse (New York, N.Y.), 38(2):114–123.

Cassidy, R. M. and Tong, Q. (2017).
Hunger and satiety gauge reward sensitivity.
Frontiers in endocrinology, 8:104.

Castro, D. C., Cole, S. L., and Berridge, K. C. (2015).
Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry.
Frontiers in systems neuroscience, 9:90.

Celada, P., Puig, M. V., Casanovas, J. M., Guillazo, G., and Artigas, F. (2001).
Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1a, gaba(a), and glutamate receptors.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(24):9917–9929.

Christoph, G. R., Leonzio, R. J., and Wilcox, K. S. (1986).
Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 6(3):613–619.

Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B., and Uchida, N. (2012).
Neuron-type-specific signals for reward and punishment in the ventral tegmental area.
Nature, 482(7383):85–88.

Dalton, G. L., Phillips, A. G., and Floresco, S. B. (2014).
Preferential involvement by nucleus accumbens shell in mediating probabilistic learning and reversal shifts.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 34(13):4618–4626.

Eshel, N., Bukwich, M., Rao, V., Hemmelder, V., Tian, J., and Uchida, N. (2015).
Arithmetic and local circuitry underlying dopamine prediction errors.
Nature, 525(7568):243–246.

Feja, M., Hayn, L., and Koch, M. (2014).
Nucleus accumbens core and shell inactivation differentially affects impulsive behaviours in rats.
Progress in neuro-psychopharmacology & biological psychiatry, 54:31–42.

Fletcher, P. J., Tampakeras, M., Sinyard, J., and Higgins, G. A. (2007).
Opposing effects of 5-ht(2a) and 5-ht(2c) receptor antagonists in the rat and mouse on premature responding in the five-choice serial reaction time test.
Psychopharmacology, 195(2):223–234.

Frazer, A. and Hensler, J. (1999).
Serotonin receptors.
In Siegel, G., Agranoff, B., and Albers, R., editors, Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Lippincott-Raven, Philadelphia, 6th edition.

Gonçalves, L., Nogueira, M. I., Shammah-Lagnado, S. J., and Metzger, M. (2009).
Prefrontal afferents to the dorsal raphe nucleus in the rat.
Brain research bulletin, 78(4-5):240–247.

Goto, Y. and Grace, A. A. (2005).
Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior.
Nature neuroscience, 8(6):805–812.

Groenewegen, H. J., Berendse, H. W., and Haber, S. N. (1993).
Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents.
Neuroscience, 57(1):113–142.

Hagena, H. and Manahan-Vaughan, D. (2017).
The serotonergic 5-ht4 receptor: A unique modulator of hippocampal synaptic information processing and cognition.
Neurobiology of learning and memory, 138:145–153.

Harrison, A. A., Everitt, B. J., and Robbins, T. W. (1997).
Central 5-ht depletion enhances impulsive responding without affecting the accuracy of attentional performance: interactions with dopaminergic mechanisms.
Psychopharmacology, 133(4):329–342.

Heimer, L., Zahm, D., Churchill, L., Kalivas, P., and Wohltmann, C. (1991).
Specificity in the projection patterns of accumbal core and shell in the rat.
Neuroscience, 41(1):89–125.

Homberg, J. R. (2012).
Serotonin and decision making processes.
Neuroscience and biobehavioral reviews, 36(1):218–236.

Hong, S. and Hikosaka, O. (2008).
The globus pallidus sends reward-related signals to the lateral habenula.
Neuron, 60(4):720–729.

Hong, S., Jhou, T. C., Smith, M., Saleem, K. S., and Hikosaka, O. (2011).
Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(32):11457–11471.

Humphries, M. D. and Prescott, T. J. (2010).
The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward.
Progress in neurobiology, 90(4):385–417.

Ikemoto, S. (2007).
Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex.
Brain research reviews, 56(1):27–78.

Ji, H. and Shepard, P. D. (2007).
Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a gaba(a) receptor-mediated mechanism.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(26):6923–6930.

Juckel, G., Mendlin, A., and Jacobs, B. L. (1999).
Electrical stimulation of rat medial prefrontal cortex enhances forebrain serotonin output: implications for electroconvulsive therapy and transcranial magnetic stimulation in depression.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 21(3):391–398.

Kelley, A. (2004).
Ventral striatal control of appetitive motivation: Role in ingestive behavior and reward-related learning.
Neurosci Biobehav Rev, 27(8):765–776.

Khani, A. and Rainer, G. (2016).
Neural and neurochemical basis of reinforcement-guided decision making.
Journal of neurophysiology, 116(2):724–741.

Kowski, A. B., Veh, R. W., and Weiss, T. (2009).
Dopaminergic activation excites rat lateral habenular neurons in vivo.
Neuroscience, 161(4):1154–1165.

Lavezzi, H. N. and Zahm, D. S. (2011).
The mesopontine rostromedial tegmental nucleus: an integrative modulator of the reward system.
Basal ganglia, 1(4):191–200.

Lee, H. S., Kim, M. A., Valentino, R. J., and Waterhouse, B. D. (2003).
Glutamatergic afferent projections to the dorsal raphe nucleus of the rat.
Brain research, 963(1-2):57–71.

Li, Y., Zhong, W., Wang, D., Feng, Q., Liu, Z., Zhou, J., Jia, C., Hu, F., Zeng, J., Guo, Q., Fu, L., and Luo, M. (2016).
Serotonin neurons in the dorsal raphe nucleus encode reward signals.
Nature communications, 7:10503.

Linley, S. B., Hoover, W. B., and Vertes, R. P. (2013).
Pattern of distribution of serotonergic fibers to the orbitomedial and insular cortex in the rat.
Journal of chemical neuroanatomy, 48-49:29–45.

Lottem, E., Lörincz, M. L., and Mainen, Z. F. (2016).
Optogenetic activation of dorsal raphe serotonin neurons rapidly inhibits spontaneous but not odor-evoked activity in olfactory cortex.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 36(1):7–18.

Luo, M., Zhou, J., and Liu, Z. (2015).
Reward processing by the dorsal raphe nucleus: 5-ht and beyond.
Learning & memory (Cold Spring Harbor, N.Y.), 22(9):452–460.

Mathur, B. N., Capik, N. A., Alvarez, V. A., and Lovinger, D. M. (2011).
Serotonin induces long-term depression at corticostriatal synapses.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(20):7402–7411.

Matsumoto, M. and Hikosaka, O. (2007).
Lateral habenula as a source of negative reward signals in dopamine neurons.
Nature, 447(7148):1111–1115.

Mengod, G., Cortés, R., Vilaró, M. T., and Hoyer, D. (2010).
Chapter 1.6 - distribution of 5-ht receptors in the central nervous system.
In Müller, C. P. and Jacobs, B. L., editors, Handbook of the Behavioral Neurobiology of Serotonin, volume 21 of Handbook of Behavioral Neuroscience, pages 123 – 138. Elsevier.

Michelsen, K. A., Schmitz, C., and Steinbusch, H. W. M. (2007).
The dorsal raphe nucleus–from silver stainings to a role in depression.
Brain research reviews, 55(2):329–342.

Miyazaki, K., Miyazaki, K. W., and Doya, K. (2012).
The role of serotonin in the regulation of patience and impulsivity.
Molecular Neurobiology, 45(2):213–224.

Mlinar, B., Mascalchi, S., Mannaioni, G., Morini, R., and Corradetti, R. (2006).
5-ht4 receptor activation induces long-lasting epsp-spike potentiation in ca1 pyramidal neurons.
The European journal of neuroscience, 24(3):719–731.

Mok, A. C. and Mogenson, G. J. (1974).
Effects of electrical stimulation of the lateral hypothalamus, hippocampus, amygdala and olfactory bulb on unit activity of the lateral habenular nucleus in the rat.
Brain research, 77(3):417–429.

Morales, M. and Margolis, E. B. (2017).
Ventral tegmental area: cellular heterogeneity, connectivity and behaviour.
Nature reviews. Neuroscience, 18(2):73–85.

Nakamura, K. (2013).
The role of the dorsal raphé nucleus in reward-seeking behavior.
Frontiers in integrative neuroscience, 7:60.

Neufang, S., Akhrif, A., Herrmann, C. G., Drepper, C., Homola, G. A., Nowak, J., Waider, J., Schmitt, A. G., Lesch, K.-P., and Romanos, M. (2016).
Serotonergic modulation of 'waiting impulsivity' is mediated by the impulsivity phenotype in humans.
Translational psychiatry, 6(11):e940.

Noonan, M. P., Kolling, N., Walton, M. E., and Rushworth, M. F. S. (2012).
Re-evaluating the role of the orbitofrontal cortex in reward and reinforcement.
The European journal of neuroscience, 35(7):997–1010.

Ogawa, S. K., Cohen, J. Y., Hwang, D., Uchida, N., and Watabe-Uchida, M. (2014).
Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems.
Cell reports, 8(4):1105–1118.

Ottersen, O. P. (1982).
Connections of the amygdala of the rat. iv: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase.
The Journal of comparative neurology, 205(1):30–48.

Palacios, J. M., Waeber, C., Hoyer, D., and Mengod, G. (1990).
Distribution of serotonin receptors.
Annals of the New York Academy of Sciences, 600:36–52.

Pan, W.-X., Schmidt, R., Wickens, J. R., and Hyland, B. I. (2005).
Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 25(26):6235–6242.

Parent, A., Gravel, S., and Boucher, R. (1981).
The origin of forebrain afferents to the habenula in rat, cat and monkey.
Brain research bulletin, 6(1):23–38.

Peñas-Cazorla, R. and Vilaró, M. T. (2015).
Serotonin 5-ht4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.
Brain structure & function, 220(6):3413–3434.

Pitkänen, A., Pikkarainen, M., Nurminen, N., and Ylinen, A. (2000).
Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. a review.
Annals of the New York Academy of Sciences, 911:369–391.

Pollak Dorocic, I., Fürth, D., Xuan, Y., Johansson, Y., Pozzi, L., Silberberg, G., Carlén, M., and Meletis, K. (2014).
A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei.
Neuron, 83(3):663–678.

Poller, W. C., Madai, V. I., Bernard, R., Laube, G., and Veh, R. W. (2013).
A glutamatergic projection from the lateral hypothalamus targets vta-projecting neurons in the lateral habenula of the rat.
Brain research, 1507:45–60.

Quina, L. A., Tempest, L., Ng, L., Harris, J. A., Ferguson, S., Jhou, T. C., and Turner, E. E. (2015).
Efferent pathways of the mouse lateral habenula.
The Journal of comparative neurology, 523(1):32–60.

Rajakumar, N., Elisevich, K., and Flumerfelt, B. A. (1993).
Compartmental origin of the striato-entopeduncular projection in the rat.
The Journal of comparative neurology, 331(2):286–296.

Reisine, T. D., Soubrié, P., Ferron, A., Blas, C., Romo, R., and Glowinski, J. (1984).
Evidence for a dopaminergic innervation of the cat lateral habenula: its role in controlling serotonin transmission in the basal ganglia.
Brain research, 308(2):281–288.

Riad, M., Garcia, S., Watkins, K. C., Jodoin, N., Doucet, E., Langlois, X., el Mestikawy, S., Hamon, M., and Descarries, L. (2000).
Somatodendritic localization of 5-ht1a and preterminal axonal localization of 5-ht1b serotonin receptors in adult rat brain.
The Journal of comparative neurology, 417(2):181–194.

Roberts, A. C. (2011).
The importance of serotonin for orbitofrontal function.
Biological psychiatry, 69(12):1185–1191.

Robinson, E. S. J., Dalley, J. W., Theobald, D. E. H., Glennon, J. C., Pezze, M. A., Murphy, E. R., and Robbins, T. W. (2008).
Opposing roles for 5-ht2a and 5-ht2c receptors in the nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 33(10):2398–2406.

Rosenkranz, J. A. and Grace, A. A. (2002).
Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(1):324–337.

Sackett, D. A., Saddoris, M. P., and Carelli, R. M. (2017).
Nucleus accumbens shell dopamine preferentially tracks information related to outcome value of reward.
eNeuro, 4(3).

Sadacca, B. F., Jones, J. L., and Schoenbaum, G. (2016).
Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework.
eLife, 5.

Saddoris, M. P., Cacciapaglia, F., Wightman, R. M., and Carelli, R. M. (2015).
Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(33):11572–11582.

Sah, P., Faber, E. S. L., Lopez De Armentia, M., and Power, J. (2003).
The amygdaloid complex: anatomy and physiology.
Physiological reviews, 83(3):803–834.

Santana, N. and Artigas, F. (2017).
Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex.
Frontiers in neuroanatomy, 11:87.

Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., and Takahashi, Y. K. (2009).
A new perspective on the role of the orbitofrontal cortex in adaptive behaviour.
Nat. Rev. Neurosci., 10(12):885–92.

Schultz, W., Dayan, P., and Montague, P. R. (1997).
A neural substrate of prediction and reward.
Science (New York, N.Y.), 275(5306):1593–1599.

Sego, C., Gonçalves, L., Lima, L., Furigo, I. C., Donato, J., and Metzger, M. (2014).
Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat.
The Journal of comparative neurology, 522(7):1454–1484.

Sesack, S. R. and Grace, A. A. (2010).
Cortico-basal ganglia reward network: microcircuitry.
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 35(1):27–47.

Shabel, S. J., Proulx, C. D., Trias, A., Murphy, R. T., and Malinow, R. (2012).
Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin.
Neuron, 74(3):475–481.

Shen, X., Ruan, X., and Zhao, H. (2012).
Stimulation of midbrain dopaminergic structures modifies firing rates of rat lateral habenula neurons.
PloS one, 7(4):e34323.

Smith, K. S., Tindell, A. J., Aldridge, J. W., and Berridge, K. C. (2009).
Ventral pallidum roles in reward and motivation.
Behavioural brain research, 196(2):155–167.

Sparta, D. R. and Stuber, G. D. (2014).
Cartography of serotonergic circuits.
Neuron, 83(3):513–515.

Stanley, B., Willett, V., Donias, H., Ha, L., and Spears, L. (1993).
The lateral hypothalamus: a primary site mediating excitatory amino acid-elicited eating.
Brain Res, 630(1-2):41–49.

Stanley, B. G., Urstadt, K. R., Charles, J. R., and Kee, T. (2011).
Glutamate and gaba in lateral hypothalamic mechanisms controlling food intake.
Physiology & behavior, 104(1):40–46.

Steinberg, E. E., Keiflin, R., Boivin, J. R., Witten, I. B., Deisseroth, K., and Janak, P. H. (2013).
A causal link between prediction errors, dopamine neurons and learning.
Nature neuroscience, 16(7):966–973.

Stuber, G. D. and Wise, R. A. (2016).
Lateral hypothalamic circuits for feeding and reward.
Nature neuroscience, 19(2):198–205.

Swanson, L. W. (2003).
The amygdala and its place in the cerebral hemisphere.
Annals of the New York Academy of Sciences, 985:174–184.

Swanson, L. W. and Petrovich, Petrovicha, G. D. (1998).
What is the amygdala?
Trends in Neurosci, 21(8):323–331.

Takahashi, Y. K., Batchelor, H. M., Liu, B., Khanna, A., Morales, M., and Schoenbaum, G. (2017).
Dopamine neurons respond to errors in the prediction of sensory features of expected rewards.
Neuron, 95(6):1395–1405.e3.

Tremblay, L. and Schultz, W. (1999).
Relative reward preference in primate orbitofrontal cortex.
Nature, 398(6729):704–708.

Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G. D., Bonci, A., de Lecea, L., and Deisseroth, K. (2009).
Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning.
Science (New York, N.Y.), 324(5930):1080–1084.

Tsutsui-Kimura, I., Ohmura, Y., Izumi, T., Matsushima, T., Amita, H., Yamaguchi, T., Yoshida, T., and Yoshioka, M. (2016).
Neuronal codes for the inhibitory control of impulsive actions in the rat infralimbic cortex.
Behavioural brain research, 296:361–372.

Usuda, I., Tanaka, K., and Chiba, T. (1998).
Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study.
Brain research, 797(1):73–93.

Vertes, R. P., Hoover, W. B., and Rodriguez, J. J. (2012).
Projections of the central medial nucleus of the thalamus in the rat: node in cortical, striatal and limbic forebrain circuitry.
Neuroscience, 219:120–136.

Vertes, R. P., Linley, S. B., and Hoover, W. B. (2010).
Pattern of distribution of serotonergic fibers to the thalamus of the rat.
Brain structure & function, 215(1):1–28.

Wallace, M. L., Saunders, A., Huang, K. W., Philson, A. C., Goldman, M., Macosko, E. Z., McCarroll, S. A., and Sabatini, B. L. (2017).
Genetically distinct parallel pathways in the entopeduncular nucleus for limbic and sensorimotor output of the basal ganglia.
Neuron, 94(1):138–152.e5.

Wikenheiser, A. M. and Schoenbaum, G. (2016).
Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex.
Nature Reviews Neuroscience, 17:513–523.

Zahm, D. (2000).
An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens.
Neurosci Biobehav Rev, 24(1):85–105.

Zhou, J., Jia, C., Feng, Q., Bao, J., and Luo, M. (2015).
Prospective coding of dorsal raphe reward signals by the orbitofrontal cortex.
The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(6):2717–2730.