The z-transform

The Laplace transform is for continuous causal signals but in DSP we have sampled signals. So, we need to investigate what happens if we feed a sampled signal:
  $\displaystyle x(t) = \sum_{n = 0}^{\infty} x(n) \delta(t - nT) \qquad \mbox{Sampled signal}
$ (93)
into the Laplace transform:
$\displaystyle X(s)$ $\textstyle =$ $\displaystyle \sum_{n = 0}^{\infty} x(n) e^{-snT}$ (94)
  $\textstyle =$ $\displaystyle \int_{0}^{\infty} x(n) e^{-st} dt$ (95)
  $\textstyle =$ $\displaystyle \sum_{n = 0}^{\infty} x(n) \underbrace{(e^{-sT})^{n}}_{z^{-1} = e^{-sT}}$ (96)
  $\textstyle =$ $\displaystyle \sum_{n = 0}^{\infty} x(n) (z^{-1})^{n} \qquad \mbox{z-transform}$ (97)

What is $e^{-sT} = z^{-1}$? It's a unit delay (see Eq. 80).



github / contact

Creative Commons License